A JVN observation of double-peaked AGN 3C332

NAKAJIMA, Hiroki, SORAI, Kazuo, HIURA, Koichiro (Hokkaido univ.)
NIINUMA, Kotaro, FUJISAWA, Kenta (Yamaguchi univ.)
YONEKURA, Yoshinori (Ibaraki univ.)
NAKAI, Naomasa, NAGAI, Makoto (Tsukuba univ.)
MURATA, Yasunori (JAXA)
KONO, Yusuke, OYAMA, Tomoaki (NAOJ)
Abstract

- We have been surveying to reveal major process of co-evolution of galaxies and SMBHs with JVN - merger process or not?

- 3C332 is one of our targets of this survey

- We detect at least single radio core of 3C332 at 8 GHz and estimate SMBH mass.
Introduction

Coevolution of Galaxies and SMBH

Maggorian relation and

Coevolution?

What is causing process of this coevolution?

Kormendy&Ho 2013
Process of Coevolution — merger

ΛCDM model suggests hierarchical processes

One of the major processes is merger and this process indicates coevolution between host galaxy and SMBH. (Kormendy&Ho 2013)

http://spaceinfo.jaxa.jp/ja/collision_of_galaxy.html
Introduction

Survey — for revealing frequency of merger

How do we assess the contribution of merger to coevolution of host galaxy and SMBH?

Counting the number of SMBHs from high-z to low-z

- High-resolution
- High-sensitivity
- Many targets

High-sensitivity VLBI observation.

Our group have been surveying observation to reveal signatures of merger by Japanese VLBI Network
Observation

Japanese VLBI Network (JVN)

Array performance
Baseline : 54 km ~ 2564 km
Sensitivity : 4 mJy ~ 94 mJy (@8 GHz)

http://www.astro.sci.yamaguchi-u.ac.jp/jvn/

Our observation

Array :
- Usuda(臼田) station
- Tsukuba(筑波) station
- Hitachi(日立) station
- Yamaguchi(山口) station

Sensitivity (8GHz) :
- 7σ ~ 3.6 mJy

Resolution(Baseline) :
- 10 mas(800 km)
Target

Radio Galaxy 3C332 ($z \sim 0.15$)

Properties:

- Pair of radio lobes (Miller 1985)
 - pair of radio lobes in 1.4 GHz with VLA.

- Double peaked AGN (Cao & Wang 2006)
 - bipolar outflow
 - accretion disk
 - symmetric BLR
 - a binary BLR in a binary SMBH system

Miller 1985

No detection with VLBI
No detection with VLBI

Properties:
- Pair of radio lobes (Miller 1985)
 - pair of radio lobes in 1.4 GHz with VLA.
- Double peaked AGN (Cao & Wang 2006)
 - bipolar outflow
 - accretion disk
 - symmetric BLR
 - a binary BLR in a binary SMBH system

Miller 1985
Result

Image of 3C332

- Flux: \(\sim 30\) mJy@8 GHz
Origin of detected component in 3C332

- Brightness Temperature:
 \[T_B \approx 2 \times 10^9 \text{ K} \]

- linear scale of beam size: \(-22 \text{ pc}\)
 \[T_B > 10^5 \text{ K} \] (typical value of SN)

\(40 \text{ mas} = 88 \text{ pc}\)

The origin of component is
- AGN
- SNR or SNe
Discussion

SMBH mass of 3C332 radio core

Estimate SMBH mass (assumed single core)

← Fundamental Plane (Merloni et al. 2003, Falcke et al. 2004)

Paragi et al. 2014
Discussion

SMBH mass of 3C332 radio core

Estimate SMBH mass (assumed single core)

→ Fundamental Plane (Merloni et al. 2003, Falcke et al. 2004)

- $\log L_{5\text{GHz}} = 6.0 \times 10^{33}$ W
 (assumed $\alpha = 0.3$ (Slee et al. 1994))
- $L(2-10\text{keV}) = 1.6 \times 10^{36}$ W
 (Sambruna et al. 1999)

SMBH mass of 3C332: $4.0 \times 10^7 \text{ M} \odot$
Discussion

How many nuclei?

- Approaching within 22 pc
- Already merged
- One source is radio quiet

- Dual AGN only detected by Rodriguez et al. 2006:
 ~ 7 pc (~7 mas)
Discussion

How many nu...

- Approaching

Typical value or not?

7 mas

Rodriguez et al.2006
How many nuclei?

But our observation is first detection for 3C332

Maybe many VLBI sources in hiding

- Dual AGN only detected by Rodriguez et al. 2006:
 ~ 7 pc (~7 mas)

We only say “detect radio core in 10 mas resolution”
Conclusion

• We detect radio core of double peaked AGN 3C332.

• Estimate SMBH mass of 3C332 from Fundamental Plane
 \[M_{\text{BH}} \sim 4.0 \times 10^7 \, M_{\odot} \]

• Detected **single core**
 \[\rightarrow \text{Three possibilities:} \]
 - Already quenched in radio
 - Already merged
 - One source is quenched
Future work

3C93 — nearby double peaked AGN
3C8 and PKS0139-273 — high-z radio galaxies and much more samples sources

- 3C93 are not detected with JVN three baseline (3, December, 2014), (Yamaguchi, Tsukuba, Hitachi)
- 3C8 are only detected with JVN in short baseline (800 mas) (4, December, 2014), (Yamaguchi, Hitachi, Tsukuba)
- PKS0139-273 are observed by JVN
 - PKS0139-273 is observed 4 stations (21, May, 2015)
- Survey observation
 - ongoing project (have observed 109 targets)