Efficient acceleration of relativistic magneto-hydrodynamic jets: theoretical study

(Toma & Takahara 2013, Prog. Theor. Exp. Phys., 2013, 3E02)

Kenji TOMA
(Tohoku U, JAPAN)
Collaboration with F. TAKAHARARA

8th East Asia VLBI Workshop Program @ Hokkaido U, JAPAN, July 8-10, 2015
Relativistic Jets

- Active galactic nuclei, gamma-ray bursts, etc.
- Lorentz factor $\Gamma \sim 10^{1-10^{3}}$ (?)
- One of the major problems in astrophysics

- Those objects are candidates of high-energy CR, ν, and GW emitters.
Promising Scenario

- Steady extraction of rotational energy of accretion disk or BH (Goldreich & Julian 1969; Blandford & Znajek 1977; see also KT & Takahara 2014) → Poynting-domin jet (Kino+ 15)
- Mass loading mechanism unknown. Unsteady process or diffusion of high-energy hadrons? (KT & Takahara 2012; Kimura et al. 2015)
- Matter acceleration by Lorentz force
- Collimation by external pressure

(see numerical simulations by J. McKinney, A. Tchekhovskoy, etc.)
Matter acceleration, collimation

- Particles are accelerated by $J \times B$ force (= energy flux conversion from Poynting to kinetic)
- $J \times B$ force also collimates the flow
- But ρE force expands the flow
- In the relativistic flow, $E \sim -v_p \times B_\phi \sim B_\phi$ beyond the light cylinder $\Rightarrow B_\phi^2$ stress is not effective for collimation (except for the region near the axis) (Komissarov+09; Lyubarsky 09)

- Efficient acceleration requires expansion of magnetic flux tube (\sim de Laval nozzle) (e.g. Begelman+94; KT & Takahara 2013)
Acceleration mechanism

De Laval nozzle:
one-dimensional hydrodynamic case

\[
\left(1 - \frac{v^2}{c_s^2}\right) \frac{dv}{v} = \frac{-dS}{S}
\]

\(v < c_s\)
\(\text{High } P\)

\(v > c_s\)
\(\text{Low } P\)

Two-dimensional magneto-hydrodynamic case

\[
\left(1 - \frac{u_f^2}{u_p^2}\right) \frac{d\Gamma}{\varepsilon - \Gamma} + \frac{c^2\Gamma_{in}}{r^2\Omega^2\Gamma} \frac{d\Gamma}{u_p} + \left(1 + \frac{2\Gamma_{in}}{\Gamma}\right) \left(-v_\phi dv_\phi\right) v_p^2 = \frac{-dS}{S}.
\]

Magnetic flux tube must be expanded when the super-fast flow is accelerated.
Acceleration mechanism

(Komissarov, Vlahakis, Konigl & Barkov 2009)

- Steady axisymmetric MHD solution
- BH gravity neglected
- External rigid wall (parabolic)
- Gradual acceleration
- Collimation near the axis leads to expansion of outer region

(see also Lyubarsky 2009; Asada, Nakamura et al. 2014)

Poloidal B field lines & Density

Poloidal currents & Lorentz factor
Acceleration efficiency

(Komissarov, Vlahakis, Konigl & Barkov 2009)

- Poynting/kinetic \(\sim 1 \) at \(r \sim 10^4 r_{lc} \)
 \((z \sim 10^6 r_{lc})\) which is extremely large distance
- But observations of blazars imply Poynting/kinetic \(< 0.1 \) at \(r \sim 10^3 r_{lc} \) (e.g. Kino+ 2002; Sikora + 2005)

- (Efficient magnetic dissipation?)

We look for boundary conditions for more efficient acceleration
Field line near the boundary

- Focus on the fluid motion along the field line near the boundary (not solving transverse structure)
- Assume the shape of the boundary
- Look for field structure for efficient acceleration
- External pressure

\[
\left. \left(\frac{B_p^2 + B_\varphi^2 - E^2}{8\pi} \right) \right|_{\psi=\psi_0} = P_{\text{ext}}(z).
\]
Examples of field line structure

- Boundary: $y = 0.1 \, x^2$
- Plot the field line of $\Psi = 0.95 \, \Psi_0$

\[
y = D \left(\frac{x}{d} \right)^{a(\psi)}, \quad y = A_0 x^{a_0} + F(\psi) x^b,
\]

More efficient acceleration
Solutions of cold MHD wind eq.

Both cases show Poynting/kinetic ~ 0.3 at $r \sim 3 \, r_{lc}$

More efficient acceleration, consistent with blazar observations
Solutions: external pressure

- **Type 1**: Dotted line
- **Type 2-A**: Dotted-dashed line
- **Type 2-B**: Dotted line
- **Type 2-C**: Dashed line

Figure 7 (top right) shows a wind solution for ψ^5_0 as that for Type 1, i.e., the dashed line in Fig. 6 (top right) represents the poloidal field line of ψ_1^5. This corresponds to Case 1. At $x \approx 18$, this is comparable to the observational suggestion of a conical shape. The field line of ψ_1^5 decreases as a power law function of x.

Jet axis

Outflow region

External medium could be the corona with closed field loops?

Very rapid decay!

Longer rapid decay, more efficient acceleration

Equation (4.12)

The range where $x < 1.5 \times 10^9$ is shown in Fig. 6 (bottom left). This means that $x > 10^9$.

Equation (4.9)

$\xi \propto x^{-12}$.

Solution

- **External pressure**
 - P_{ext} is shown in Fig. 6 (top right). It drops very rapidly at $x < 10^5$. This is simply a generic property for the cases of Type 1.
 - For this parameter value, the rapid acceleration phase just beyond $x = B_0$ is comparable to the observational suggestion of a conical shape. The field line of ψ_1^5 decreases monotonically, as can be expected by Eq. (4.12).

Equation (4.10)

The parameters are $a = 10^5$, $b = 10^3$, and $c = 10^2$. This is shown in Fig. 6 (top right) and with the same range of x.

Equation (4.13)

P_{ext} decreases as a power law function of x.

Equation (4.14)

Very rapidly at $x < 10^5$. This is simply a generic property for the cases of Type 1.

Equation (4.15)

$\xi \propto x^{-12}$.

Equation (4.16)

$\xi \propto x^{-12}$.
Summary

• MHD jet can accelerate the particles to relativistic speeds (e.g. Komissarov+ 2009) (consistent with radio observations of M87 jet... Asada+ 2014; Kino+ 2015)

• More efficient acceleration is needed for explaining the blazar gamma-ray spectra

• We show boundary conditions for very efficient acceleration, which correspond to very rapid decay of external pressure

• Another possibility is efficient magnetic dissipation (whose mechanism is not clear yet)