長周期変光星の理論的周期

Theoretical periods of the LPV

竹内 峯

恒星の動径方向脈動の周期

気体球の線形振動の理論は20世紀前半に確立され、恒星構造が分かれば、容易に周期を求めることができる。

ミラのような長周期変光星でも、20世紀半ばに線形周期については、解決していた。

<mark>質量が 1M_{sun} 程度</mark>。

線形周期の基本関係

$$P\sqrt{(\rho)}=Q$$

P 周期

夕 平均密度

Q 脈動パラメター

Q は恒星内部の物理量の勾配による

ミラ型の場合

Whitelock & Feast (2000)

- 周期 = 350日
- 質量 = 1.38 M_{sun}
- 半径 = 474 R_{sun}
- 平均密度 = 1.30 × 10⁻⁸ ρ_{sun}

Q = 0.04

検討課題

半径の推定は適切か

脈動パラメターは適切か Q = 0.04 は 第1陪振動 Fox & Wood (1982)

理論的脈動周期 - 線形近似

理論的研究における壁

- 大規模な対流の取り扱い

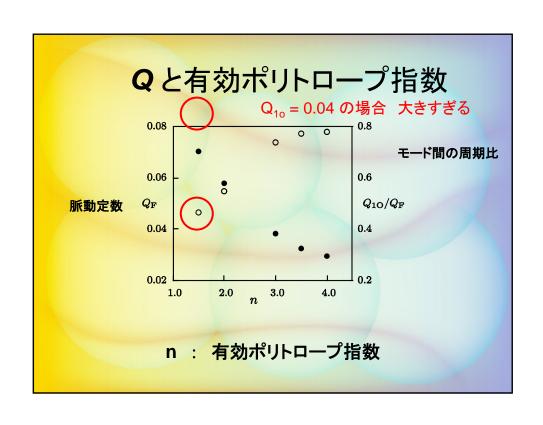
<mark>周期にはあまり影響を与えないのではないか</mark>

脈動が成長するかどうかには 大きな影響がある

信頼できる理論の結果は

質量、絶対光度、対流模型中の 混合距離をさまざまに変えてみた。

信頼できるのは周期比のみである。


$$P_{10}/P_F = 0.45$$

Wood & Sebo (1996)

Q = 0.04 はそのままでは使えない

脈動パラメターと周期比

• モードの異なる固有振動の周期比と、有効ポリトロープ指数との間に は明瞭な関係がある。

非線形計算 (流体力学模型) hydro-code

500 年に相当する時間、模型の脈動を観察 したところ、線形計算の周期から大きくはず れた。 Ya'ari & Tuchman (1996,1999)

模型	P _F	P ₁₀	P _{final}
А	395	147	270
В	478	173	332
С	600	202	385
D	532	190	440

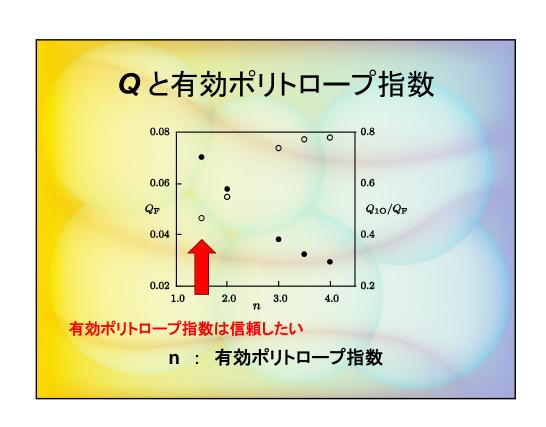
周期比が 0.45 より小さい

表面の境界条件がどうなっているか。

ここにも問題が残っている

非線形計算 (流体力学模型) hydro-code

半径も変わっているので、それを考慮して脈動パラメターはどうなっているか見てみる。


模型	Q_F	Q ₁₀	Q _{final}
Α	0.097	0.036	0.071
В	0.103	0.037	0.061
С	0.105	0.036	0.057
D	0.100	0.036	0.065

理論計算の問題点

<mark>線形脈動周期にもかな</mark>りばらつきがある。

Bathes & Luri (2001)

線形計算の結果と非線形計算の結果は かなり違う。

半径を求める際の問題

Bessell et al (1989), Bessell, Scholz & Wood (1996) Houdashelt et al (2000) Bartehs & Luri (2001)

これらで示されている色有効温度関係の 方が説得力がある。

ミラ型の物理量

- 周期 = 350日
- 質量 = 1.38 M_{sun}

• 半径 = 474 R_{sun}

1.46 M_{sun} 332 R_{sun}

• 平均密度 = 1.30 × 10⁻⁸ ρ_{sun}

結論

理論的周期を導き出す上では多くの 問題があり、 すべての研究者が納得できる値は、 まだないのではないか。

ミラ型変光星は基本モードで脈動していると するのが、理論計算、色温度関係など見渡し て、今のところ最も据わりがよいようである。