

	2衛星の遅延時間	差の決定の原理	里と条件	
RstarとVstarの相関 位相差 φ _R (t)- φ _V (t)	波の個数	電離層	位相誤差	
$\Delta \phi_i = 2\pi f_i \Delta \tau_j - 2\pi N_i - \frac{2\pi k \Delta D_s}{f_i} + [[\sigma_j]]$				
s1: 2212, s2: 2218, s3: 2287, x: 8456 MHz				
$N_{s2} - N_{s1} = -\frac{\Delta\phi_{s2} - \Delta\phi_{s1}}{2\pi} - k\Delta D_s (\frac{1}{f_{s2}} - \frac{1}{f_{s1}})$				
+ $(f_{s2} - f_{s1})\Delta \tau_s + [[\frac{\sqrt{2\sigma_s}}{2\pi}]]$				
決定手順	決定条件			
			111 . 0 .	
1. $N_{s2} - N_{s1}$ 0.0016. 6MHz	$39 \Delta D_s + 0.006 2$	$\Delta au_{arepsilon} + 0.003928 _{ m <83 \ ns}$	σ_s < 0.5 Eq.1	
1. $N_{s2} - N_{s1}$ 0.0016. 6MHz 2. $N_{s3} - N_{s1}$ 0.04920	$39 \Delta D_s + 0.006 \Delta$ $5 [[\sigma_s]] + 0.000618$	$\Delta au_arepsilon +0.003928 $ <83 ns $8 \Delta D_s <0.5$	σ_s]] < 0.5 Eq.1 Eq.2	
1. $N_{s2} - N_{s1}$ 0.0016. 6MHz 2. $N_{s3} - N_{s1}$ 0.04920 3. N_{s1} 0.1159	$39 \Delta D_s + 0.006 \Delta $ $5 [[\sigma_s]] + 0.000618$ $[[\sigma_s]] + 1.1917 \Delta $	$\Delta au_{s} + 0.003928 [< 83 { m ns} < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < $	σ_s]] < 0.5 Eq.1 Eq.2 Eq.3	
1. $N_{s2} - N_{s1}$ 0.0016. 6MHz 2. $N_{s3} - N_{s1}$ 0.04920 3. N_{s1} 0.1159 4. N_x 0.0110	$\begin{aligned} &39 \Delta D_s + 0.006 \Delta \\ &5 [[\sigma_s]] + 0.000618\\ &[[\sigma_s]] + 1.1917 \Delta \\ &< 4.3 \deg\\ &[[\sigma_x]] + 8.456\Delta \tau_{xs} \end{aligned}$	$\Delta au_{s} + 0.003928 [< 83 ns 8 \Delta D_{s} < 0.5D_{s} < 0.5+ 2.1573 \Delta D_{s} < 0.5$	σ_s []] < 0.5 Eq.1 Eq.2 Eq.3 < 0.5 Eq.4	

同一ビーム観測時の2衛星の遅延時間差と相関位相の変動の検討6			
熱雑音による位相変動	遅延時間の予測値誤差△てs		
積分時間100 s, 帯域が50 Hzの場合 S/N (dB) 相関位相変動(度)	測距と2-way Dopplerで衛星追跡		
Rstar Vstar Rstar Vstar	精度200nrad (月面上で76mに相当)		
S帯 19 19 0.7 0.7 X帯 17 10 1 1 0.7	基線長2000kmの場合 <u>Δ τ s=1 ns</u>		
A带 1/ 19 1.1 0.7			
S帯とX帯の遅延時間差の差△ τ xs その他			
S帯とX帯搭載アンテナの 20cmの位置ずれによる分 3.5 ps	2局の原子時計の時刻差と時刻レート差 は相対VLBI観測により除去できる		
電離層による成分 4.7 ps	観測局位置ずれ数cm、 無視		
計 0.0082 ns	2		

