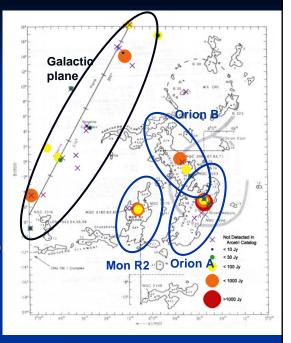
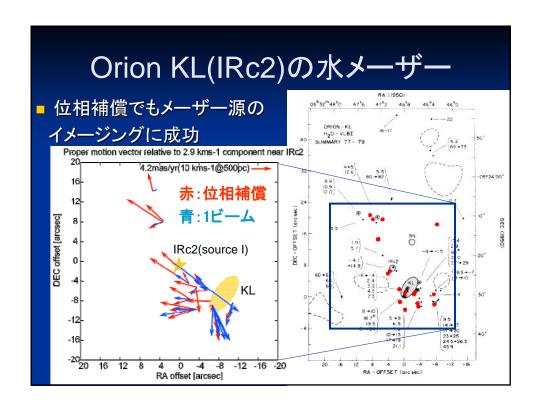
VERAプロジェクト観測 「オリオン座いっかくじゅう座 分子雲複合体の立体構造」

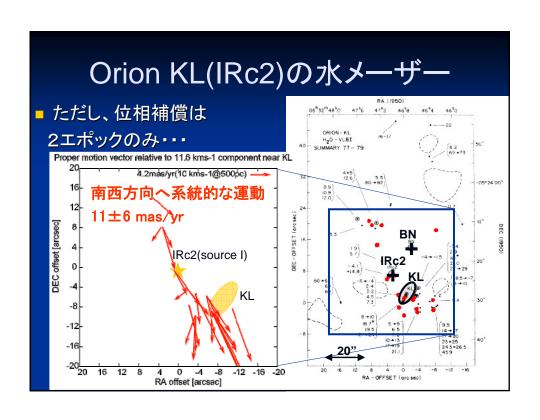
廣田朋也(国立天文台VERA推進室) ほかVERAグループ


目的

星形成領域がテーマの初期プロジェクト観測

- 年周視差、固有運動の計測
 - 分子雲の力学的構造や形成機構の解明
 - 星形成領域の運動(ジェット、ディスク)
 - 距離決定結果に基づいた星形成研究の定量化・精密化
- 銀河回転の測定(オリオンアーム)
 - → 他プロジェクト観測に生かす


オリオン座 いっかくじゅう座 分子雲複合体


- 距離400-800 pc
- さまざまな質量の 原始星、多くの H2Oメーザー源 (VERAによるサーベイ)

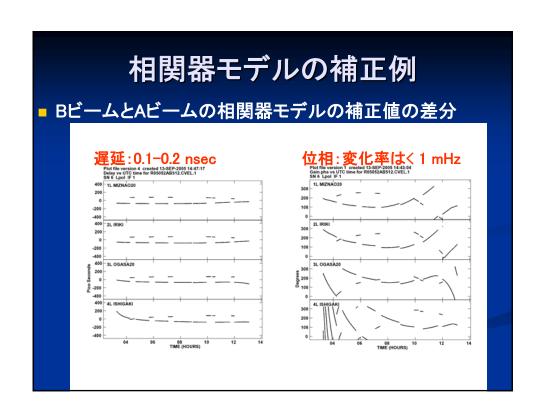
これまでの経過

- 2003年10月にメーザー源のサーベイ観測
 - 観測天体の候補を探査
- 2004年1月から月1回の定常的なモニター観測開始
 - 観測天体: Orion KL, HH1, Mon R2, OMC-2(途中で消える)
- 2004年VERAユーザーズミーティングで途中経過報告
 - 位相補償によるイメージングが成功、位置天文はまだ・・・
- 2005年5月まで観測継続

これまでの経過と問題点

- 位相補償でのイメージングは一部エポックでのみ成功
 - 冬季の好条件時のみイメージが収束している
- 大気による遅延が補正しきれていない?
 - 相関器モデルの補正が必要
- オリオン座いっかくじゅう座分子雲ではイメージング困難
 - 赤緯-5度のためUVの埋まりが悪く、仰角も低い
 - □ 赤緯が高い近傍の星形成領域NGC1333のデータで検証

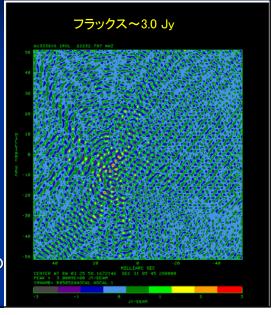
現実の2ビーム位相補償


- 相関器出力の位相残差(アプリオリの補正後) $\phi_{A} = \phi_{A}^{str} + \phi_{A}^{pos} + \phi_{A}^{inst} + \phi_{A}^{ant} + \phi_{A}^{atm} \phi_{A}^{apriori} + \phi_{B}^{ant} + \phi_{B}^{atm} + \phi_{B}^{atm} \phi_{B}^{apriori} + \phi_{B}^{ant} + \phi_{B}^{atm} +$
- 2ビーム間の位相差

 φ_A-φ_B = (φ str_A = φ str_B) + (φ pos_A φ pos_B) + (φ inst_A φ inst_B)

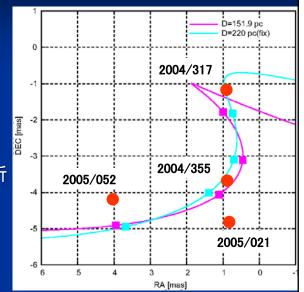
 + (φ ant_A φ ant_B) + (φ atm_A φ atm_B) (φ apriori_A φ apriori_B)

 = con in the condition of th
- 天頂大気遅延の精度向上のため、補正テーブルを作成



相対VLBIでのイメージング 参照電波源で位相較正 位相較正装置による

- 2ビーム位相差補正 ■ 相関器モデルの補正
- 補正前のイメージ(右)と比べると・・・


参照電波源で位相補償を した時のメーザースポットの ダーティーマップ

相対VLBIでのイメージング 参照電波源で位相較正 位相較正装置による 2ビーム位相差補正 相関器モデルの補正 のが一ティーマップ は相構復後に相関器 モデル補正をした場合 のダーティーマップ

オリオンより近いNGC1333の場合

- 距離200-300pcの近傍星形成領域
 - 事 赤緯高いためイメージング有利
- 曲線的な運動?
- 年周視差込みで解析
 - \Rightarrow D =150 pc
- 誤差大きいが・・・

今後の展望

- 観測データは2004年1月から2005年5月まででほぼ完了
- 相関器モデルの補正を行ってイメージング
 - 低仰角データの扱い(フラグする?)
 - 天頂方向の遅延の推定方法の確立
 - スポットとサイドローブの区別
 - 異なるエポック間のスポットの同定
 - 短寿命の異なるスポットでの視差のつなぎあわせ
- Ori-KL, HH1, Mon R2に加えて、NGC1333の年周視差を めざす。できれば今年中に・・・。