

Recent Progress of Korean VLBI Network (KVN) Project

2006.10.

Se-Hyung Cho Korea Astronomy and Space Science Institute

Contents

- Characteristics of Korean VLBI Network
- KVN Expectation Schedule
- View of Each Observatory
- Receiver system & DAS
- Quasi Optics Mounting on Receiver Plate and Test
- K-J Correlarator
- KVN Science

Characteristics of Korean VLBI Network

- National Facility dedicated to exclusive mm-VLBI (KVN 21 m x 3+TRAO 14 m)
- *Simultaneous* multi-frequency observation from 22GHz up to 129GHz
- Multi-frequency phase-referencing and fast-switching phase-referencing capabilities
 → Faint sources, weak lines at mm wavelengths
- Compact network with a few hundred km baselines

KVN Expectation Schedule

■ Observatory Building

- Ulsan and Yonsei obs. building was completed
- Tamna obs. building will be completed within this autumn

Antenna Installation

- First antenna at Ulsan observatory
- Started on Sept. 18 and will be finished until about end of 2006
- Test observation and acceptance as a single dish : within March 2007
- Second antenna at Yonsei observatory
 - Installation and acceptance will be finished within Sept. 2007
- Third antenna at Tamna observatory
 - Installation and acceptance will be finished within end of 2007

Receiver Development and Installation

- Three sets of 22, 43 GHz band receivers at 1st stage will be developed and installed within 2008
- At least, one set of 2/8 GHz receivers will be developed within 2008
- **86, 129 GHz band receivers at 2nd stage**
 - Design work will be started in 2007 (Development budget was approved by government this year)
 - Development and installation will be completed until 2010

Correlator Development and Installation

- Completion of specifications, Korea-Japan working group, and review committee
- Assemble whole correlator system in 2008 and start of experimental operation in 2009
- Practical use for KVN and K-J joint VLBI network in 2010

KVN Ulsan Observatory

KVN Yonsei Observatory

KVN Research Center moved to High Tech. Science and Technology Building of Yonsei Univ. in Sept. 2006.

KVN Tamna Observatory

Receiver system & DAS

Freq. Band	S Band	X Band	K Band	Q Band
Freq. Range	2.2 ~ 2.8 GHz	8 ~ 9 GHz	21.5 ~23.5 GHz	42 ~ 44 GHz
Rx Noise	< 25 K	< 25 K	< 30 K	< 50 K
1 st IF / BW	2.5G/600MHz	8.5G/1GHz	8.5G/2GHz	8.5G/2GHz
IF Power	-20 dBm	-20 dBm	-20 dBm	-20 dBm
Polarization	LCP/RCP	LCP/RCP	LCP/RCP	LCP/RCP

* 86, 129 GHz Receivers will be installed within 2010.

Proto-type of KVN 43GHz HEMT receiver

Developed : June 2003

Proto-type of KVN 86GHz HEMT receiver

Quasi Optics Mounting on Receiver Plate and Test

RX Group (S. T. Han, M. H. Jung & D. H. Je)

Dicroic Low-pass filter

Low -pass filters : Meter-mesh (Thomas Keathing)

- 22GHz/43GHz channel

- 22 and 43GHz/86 and 129GHz channel

- 86GHz/ 129GHz channel

K band Ortho-Mode-Transducer test

C. Kim & Je

A.R. vs frequency

KVN at VERA User's Meeting

GHz

Time Schedule of K-J Correlarator

2005	Requirements, Specification Start of Technical Design
2006	Completion of Technical Design and Contract Start of Manufacturing (each parts)
2007	Manufacturing (each parts) Development of Control & Operation Software
2008	Assemble into Whole Correlator System Test and Debug the Correlator System (HW & SW)
2009	Start of Experimental Operation Completion of Archive System
2010	Practical Use for Korea-Japan Joint VLBI Network Establish the K-J Joint Correlation (Data) Center

Framework of K-J Joint Correlator

Contraction of the second seco

Responsible to KASI Responsible to NAOJ

Observation Mode

Mode	#IF	Bandwidth [MHz]	Max. #Chan	#Bits	Max. Data Rate [Mbps]	Recorder	VERA Modes
1	1	256	1	2	1,024		VLBI1
2	1,2	128	2	2	1,024		VERA1,VLBI2
3	1,2,3,4	64	4	2	1,024		VERA2,VLBI3
4	1,2,3,4	32	8	2	1,024		VERA4,VSOP1
5	1,2,3,4	16	16	2	1,024	Mark5B	VERA7,VERA9, Geo1, Geo2, VSOP2
6	1,2,3,4	8	16	2	512	DIR2000	Geo3, Geo4, K4-1
7	1,2,3	64/128	2/1	2	1,024		VERA3
8	1,2,3,4	32/64/128	2/1/1	2	1,024		VERA5
9	1,2,3,4	32/128	4/1	2	1,024		VERA6
10	1,2,3,4	16/32/128	2/3/1	2	1,024		VERA8
W4	1,2,3,4	512	4	2	4x2,048	Mark5B+ Fiber	

Summary of Specifications

# of Antennas	16		
# of Inputs / Antenna	4 bands (4Fx1P, 2Fx2P,1Fx2P+2Fx1P)		
Max. # of Correlations / Input	120 Cross + 16 Auto		
Subarray	2 case (12 + 4, 8 + 8)		
Bandwidth for each Input	512 MHz		
Digitization for each Input	1 Gsps by 2bits/sample		
Clock for Input data	128 MHz		
Max. Delay compensation	32,000 km		
Max. Fringe Tracking	860 kHz		
FFT points	1,048,576, w.r.t. multi-channel stream		
Word length in FFT	16+16 bits fixed point for real & imag.		
	Re-quantization to 4+4 bits fixed point		
Integration	< 25 msec		
Data compression (Flexible Binning)	8,192 channels		

K-J Correlarator in 2006

- Establishment of K-J WG and K-J correlator review committee
 - → First review committee meeting in June, Seoul
 - → Reviewing correlator manufacturing plan and specification etc.
- Contraction of correlator design work with Elecs company in Aug.
- Submit a public tender in Oct. for the contraction of correlator manufacture based on design work
- Second review committee meeting in Nov., Ulsan (KVN Ulsan Observatory) during K-J regular VLBI meeting

KVN Science

Multi-frequency and multi-epoch observational study for

Star forming region, late-type stars, Galactic center, AGN, detection of core shift, variability of microquasars, gravitational lens objects

- Maser mini workshop : July 2006 at KASI
- AGN mini workshop : Aug. 2006 at KASI by KVN Science WG
- **KVN Science Advisory Committee**
 - Reviewing KVN Key Science
 - KVN Science meeting in 2008/2009

Basic Research for KVN SiO Maser Study

- SiO J=2-1 & J=3-2 Observations towards Late-Type Stars with TRAO 14m Telescope
- o SiO J=2-1 & J=3-2 line survey and statistical study I. II. → Cho et al. 1998, 2006 ApJS
- o Simultaneous time monitoring observations of SiO J=2-1 & J=3-2 masers (1999~2001) → Kang et al. 2006 ApJS
- o First detection of the SiO v=3, J=2-1 maser emission from χ Cyg \rightarrow Cho et al. 2006 ApJ
- SiO J=2-1 & J=3-2 Observations toward Orion KL with TRAO 14m Telescope → Cho et al. 1999 AJ
- ► Connection to KVN Science in SiO Maser Study

