SELENEの同一ビームVLBI観測ための 受信アンテナ位相特性の精密計測

Same-Beam Differential VLBI Using Two Satellites of SELENE

Qinghui LIU Koji MATSUMOTO Kazuyoshi ASARI Hideo HANADA

Fuyuhiko KIKUCHI Seiitsu TSURUTA Jinsong PING Nobuyuki KAWANO

RISE Project Office, National Astronomical Observatory of Japan

frequency variation of radio wave
(temporal, spatial)
ionosphere
atmosphere
thermal noise
phase variation in receiver

Chance for same beam differential VLBI observation of SELENE

Chance for same beam differential VLBI observation of SELENE Elevation of Vstar and Rstar, and difference in Doppler frequency

Observation system

Urumqi LNA

VERA feed

SRTP, LPF, IF Pcal

whether conditions of Eq.1-4 are possibly satisfied by using same beam VLBI??

Possible factors influencing correlation phase and delay

- phase variation in receiverionosphere fluctuation
- atmospheric fluctuation
- thermal noise
- phase characteristics of receiving antenna
- phase characteristics of transmitting antenna

Variation in phase and delay in receiver

The bandwidth of LPF (100kHz) is the narrowest in the receiver, phasefrequency characteristics of the receiver is mainly determined by LPF. (video converter : 2MHz, front-end :hundreds MHz)

Bessel type LPF : phase-frequency characteristics is nearly linear

Variation in phase and delay in receiver

Phase variation after subtracting the linear component

Variation in phase and delay in receiver

Difference of phase among channels in backend : $\pm 2 \text{deg}$

Influence of atmosphere

Mizusawa, 2005

Influence of atmosphere

Mizusawa, 2005

Phase variation caused by transmitting antenna

Spectrum of correlation phase on long baseline

Phase variation caused by transmitting antenna

Removing phase variation caused by spin and irregularity in phase characteristics

FIR-LPF using Kaiser window function

Kaiser function

Removing phase variation caused by spin and irregularity in phase characteristics

Gravity information of 0-0.05Hz is remained, and phase variation caused by spin is removed

Influence of irregularity in phase characteristics of transmitting on correlation $_{R}(t)$ - $_{V}(t)$ can be reduced to 0.02 deg by using a LPF.

Phase variation caused by thermal noise

Integral time 100 s, bandwidth 50 HzS/N (dB)phase variation (deg)RstarVstarRstarVstarS-band19190.70.7X-band17191.1

Error in orbit prediction

Orbit of V- and Rstar can be determined by range and Doppler measurement with an accuracy of 100m, which corresponds to delay error of s=1 ns

Differentialdelay between S- andX-bandXS

Difference in positions of S- and Xband transmitting antenna 3.5 ps ionosphere 4.7 ps

total 0.0082 ns

other

Clock offset of H-masers at two stations is canceled

Position error of telescope is only several cm, can be ignored

Phase and power characteristics of receiving antenna

20m telescope,

Phase and power characteristics of receiving antenna

Phase variation in main beam of receiving antenna

Before correction, phase variation 0.06 rad After correction, 0.03 rad = 1.7degRMS

Phase and power characteristics of receiving antenna

Before correction, phase variation 0.055 rad After correction, 0.04 rad = 2.2degRMS

Phase and power characteristics of receiving antenna

Conclusion

Phase error in S- and X-band in same beam differential VLBI

	Error Source P		ase error	Phase erro	$r \mid \Delta y$
		[[s]] deg	[[x]] de	g Ava
	Receiver		1	1	Req
	Atmospher	e	0.7	2.8	
	Receiving a	antenna	1.7	1.7	
	Thermal no	oise	0.7	0.7, 1.1	
	Transmittin	ig anten	na 0.02	0.02	
	Root sum square 2.2 3.7				
errors					
	Ds	S	XS	[[s]]	[[x]
0	.1TECU	1ns	0.0082ns	s 3.1deg	g 5.2de

of tens cm.

The residual DORR on MIZUSAWA10m – SHANGHAI baseline. Estimated DORR is sum of predicted DORR and the residual DORR.

VLBI residuals SMART-1 arc, May 30 2006

Residuals for overlapping arcs, VLBI data, SMART-1, May 30 2006