Proper Motion of Seyfert 1 Galaxy PKS 2201+044

Hiroshi Sudou (Gifu University), Phil Edwards (CISRO), & Japanese VLBI team

2008 VERA Users Meeting

Unified Scheme for radio-loud AGNs

PKS 2201+044

- Elliptical galaxy at $z \sim 0.02$
- Optical property
 - Violent variability $\Delta m \sim 2 mag$
 - Recent spectroscopy \rightarrow Seyfert 1 Galaxy
 - Previous spectroscopy → BL Lac Object
- Radio property
 - FR I type
 - Apparent size ~ 50 kpc
 - Showing optical jet as well as radio one

Measuring the viewing angle of the radio jet

→ Which is likely BL Lac or Seyfert (Radio Galaxy) ?

How to measure the viewing angle

- Proper motion of the jet $\beta_{app}(\beta, \theta) = \beta \sin\theta / (1 \beta \cos\theta)$
- **Doppler factor** $\delta(\beta, \theta) = 1/{\gamma(1 \beta \cos \theta)}$
 - From Synchrotron self-Compton model
 Estimate from the comparison between observed and predicted X-ray flux
 - From Compton catastrophy of Brightness temperature Brightness temperature of > 1012[K] leads to
 catastrophic inverse Compton losses and forces the radiation to have a lower value
- Jet/counter-jet intensity ratio $R(\beta, \theta) = \{(1 + \beta \cos \theta)/(1 - \beta \cos \theta)\}^{3+\alpha}$

Observations

BANA - Stan

Date	Frequency [GHz]	Array [ant. num.]	Resolution [mas]
24 May, 2000	8.6	VLBA [10]	1
30 July, 2006	8.6	JVN [5]	3
28 May, 2007	8.6	JVN [8]	3

JVN [5] = VERA + Kashima JVN [8] = VERA+ Kashima+ Yamaguchi+ Usuda + Gifu

Direction of the jet

Scale	Position angle [deg]	Reference
50 kpc (VLA)	280	Laurent-Muehleisen et al. 1993
1 kpc (VLA, HST)	310	Scarpa et al. 1999 Laurent- Muehleisen et al. 1993
pc (VLBA, JVN)	315	This work

Proper motion (β_{app})

- Knot identification
 - Normal method Gaussion fitting of knots
 - The most likely positional shift of the knot component is $(\Delta x, \Delta y) = (-3.8, -3.5)$
- Proper motion is estimated to be 5.1 [mas] for 6 yrs @position angle of 313 [deg]

In this case, we adopt $\beta_{app} = 1.1$

Doppler factor (δ)

- Synchrotron self-Compton
 - δ=0.2 → consistent with Ghisellini et al. 1993
- Brightness temperature

$$\delta = \frac{T_{\rm B,int}}{T_{\rm B,obs}}$$

T_{B, obs}= 0.7×10^{11} [K] was estimated from VLBA data

 $\delta = 0.07 - 0.7$

for T $_{B,int}$ = 10¹² and 10¹¹[K], respectively

 \rightarrow consistent with the SSC results

We adopt $\delta = 0.2$

2008 VERA Users Meeting

Jet/Counter-jet intensity ratio (R)

- Counter-jet was not detected
- Lower limit of *R* can be estimated to be 5 from the VLBA map

We adopt R > 5

- Note
 - Counter-jet might be absorbed by dense plasma torus (e.g., Kameno et al. 2001),
 - Thus intrinsic *R* could be lower than observed one

Viewing angle and speed of the jet

★: (β,θ) ~ (0.95, 80)

2008 VERA Users Meeting

Summary (Science Part)

- Proper motion of PKS 2201+044 is estimated to be 1.1 c
- Together with Doppler factor, the jet viewing angle is estimated to be ~80 deg
- This indicates that this source should be a Seyfert (radio) galaxy, rather than an BL Lac
- Difference between optical and radio classification should be considered

Appendix: Methods of Knot Identification 2つのマップがあったとする ■ ジェットの固有運動を計りたい しかし、2つのマップは異なる望遠鏡で(つ) まり異なる分解能、感度)で得られている ■ または、ジェットの形状が非常に複雑(e.g., M87 @VLBA 43GHz) VSOP-2ではよりこの傾向が強まる → knot同定の精度を上げるには?

General Methods

- 1. Local Peak: ピークの1ピクセルのみ
- 2. Gaussian Peak: 明確なガウス型ピークを 構成する複数のピクセル(通常の方法)
- 3. Correlation: ある強度レベル以上の全て のピクセル
- 画像情報をできるだけ多く取り込むことで、 精度を向上させる

Two Correlation Methods

$$A(j) = \int X(i)Y(i+j)di$$

$$B(j) = \int \frac{X(i)Y(i+j)}{Q(j)}di$$

$$Q(j) = \int X^{2}(i)Y^{2}(i+j)di$$
A:通常の相関

B:自己相関による規格化

Case of PKS 2201+044 (preliminary)

- ·各マップ3oでカット(3o以下の強度は0とおいた)
- マップごとに重みはかけていない

(より精度のいいVLBAデータに重みをかけることも今後検討)

	ΔX [mas]	ΔY [mas]
ガウスフィット (No.8参照)	4.5	4.3
相関A(j)	4	3
相関B(j)	4	7

いくつかのパラメータ(e.g., カットオフ、重み関数)にて再検討したい
 疑似データを使ったシミュレーションでも検証してみたい

Next Step

- この手の画像処理の一般的手法は?
- 多少ノイズが大きくても、精度良く固有運 動を検出する最適手法を見つける(SNR 等、ケースごとに異なるかもしれない)
- VSOP-2に向け、複雑な構造のジェット の固有運動の同定方法の検討
- ビームに埋もれた複数の成分を検出でき るアルゴリズムもほしい(e.g., Double core) 2008 VERA Users Meeting