かぐや (SELENE)の子衛星の高精度位置決定: 多周波数同一ビーム法に基づく相対VLBI観測

菊池冬彦・劉慶会・花田英夫・河野宣之・松本晃治 岩田隆浩・SanderGoossens・浅利一善・石原吉明 鶴田誠逸・石川利昭・野田寛大・並木則行 NataliaPetrova・原田雄司・平勁松・佐々木晶

©NAOJ/VERA

目次

・背景(6枚) VLBIとは何か? VLB | は何故必要か? 飛翔体の精密軌道決定の重要性 Configuration of the VRAD Mission 国内VLBI観測 国際VLBI観測 手法(5枚) 結果 7 結論(1枚)

目次

・<u>手法(5枚)</u>

遅延時間とアンビギュイティ 群遅延と位相遅延 多周波数 V L B | 観測 多周波数法の困難 相対 V L B | 観測

- <u>結果(7枚)</u>
- ・
 結論
 (1枚)

群遅延と位相遅延

遅延時間は大きく二通りあるけど・・・

$$\Delta \tau = \frac{\Delta \phi_2 - \Delta \phi_1 + 2\pi (N_2 - N_1)}{2\pi (f_2 - f_1)}, \quad \sigma(\Delta \tau) \approx \frac{1}{f_2 - f_1}$$

複数の周波数に対してNの相対値を推定(数十ピコ秒精度)

例:マーズオデッセイ、のぞみ、はやぶさ、等

$$\tau = \frac{\Delta \phi_1 + 2\pi N_1}{2\pi f_1}, \quad \sigma(\Delta \tau) \approx \frac{1}{f_1}$$

個々の周波数に対してNの絶対値を推定(数ピコ秒精度)

例:マゼラン(?)

Nの推定は位相遅延の方が格段に難しい!

でも精度は位相遅延の方が桁違いに良い!何とかならないのか?

<u>位相遅延推定が成功する為には・・・</u>

個々の周波数におけるNの絶対値の推定が可能となるように、或る特定の周波数の信号だけを利用する。

この条件下で期待される位相遅延の精度は3.3ピコ秒!

多周波数法の困難

位相遅延推定が成功する為の必要条件は非常に厳しい
 ●フリンジ位相のRMS誤差

→ S帯:4.3度以下 X帯:10度以下

※中性大気&電離層の擾乱は10度以上

●全電子数(TEC)の推定RMS誤差

→ 0.23TECU以下

※GPSによる推定精度でさえ2TECUが限界

「何とかならないのか?」

日次

- ・ <u>手法(5枚)</u>
- ・結果(7枚) 相対フリンジ位相:X帯 相対フリンジ位相:S帯 相対TEC アンビギュイティの絶対値の推定 相対位相遅延誤差とクロージャ:X帯 相対位相遅延誤差とクロージャ:S帯 精密軌道決定に対するVLBIの寄与 結論(1枚)

‡10 deg.

60秒積分でのRV相対フリンジ位相のRMS誤差 1.3度 (遅延推定の必要条件は10度以下)

‡10 deg.

60秒積分でのRV相対フリンジ位相のRMS誤差 1.8度 (遅延推定の必要条件は4.3度以下)

相対TEC

各々の伝播経路におけるTECの差は 複数の周波数におけるフリンジ位相から推定可能

△△D推定結果:-0.02~-0.07[TECU]

RV相対TECのRMS誤差 0.01TECU (遅延推定の必要条件は0.23TECU以下)

位相遅延推定が成功する為の必要条件は二つとも満足! そこで実際にアンビギュイティを求めると・・・

結果は削除 (投稿論文との内容重複)

(凡例はフリンジの積分時間)

1 ps

●RMS誤差0.29ピコ秒(<目標精度3.3ピコ秒) ●7ロージャほぼ0ピコ秒

‡ 2 ps

●RMS誤差2.27ピコ秒(<目標精度3.3ピコ秒) ●クロージャほぼ0ピコ秒

Overlaps during Edge-on Geometry

R	Α	С	計
3.96	8.78	103.14	103.59
2.42	4. 37	25.60	26.08
2.73	5.61	13.44	14.82
R	A	C	計
R 2.55	A 23.00	с 229.56	計 230.72
R 2.55 1.23	A 23.00 6.39	C 229.56 20.06	計 230.72 21.09
	R 3.96 2.42 2.73	RA3. 968. 782. 424. 372. 735. 61	RAC3. 968. 78103. 142. 424. 3725. 602. 735. 6113. 44

cross

radia

(単位:メートル)

目次

- ・ <u>背景(6枚)</u>
- ・<u>手法(5枚)</u>
- ・<u>結果(7枚)</u>
- ・<u>結論(1枚)</u>

結論

●国内外のVLBI観測網で子衛星の電波観測 >追跡・受信・記録等の観測系はいずれも良好 多周波数法と同一ビーム法を併用 >位相遅延時間の推定に世界で初めて成功 > 従来の V L B | 観測よりも大幅に精度向上 >子衛星の軌道決定精度も大幅に向上)今後も観測・解析を継続 >月重力場(特に低次項)への寄与を目指す!

離角とビーム幅

相対位相遅延の誤差の見積もり

誤差要因	S帯	X帯	
熱雑音	2.7	0. Z	
アンテナ位相特性	2.1	0.6	
機械遅延	0.3	0.1	
中性大気遅延	0.24	0.1	
電離層遅延	0.02	0. OZ	
時計オフセット&レート	0	0	
上記のRSS誤差	3.44	0.64	
実際のRMS誤差	2.27	0. 29	

(単位:ピコ秒)

Overlaps during Edge-on Geometry

モデル	データ	R	Α	С	計
LP	DR	5.71	20. 79	101.03	103.30
100	DRV	7.41	30. 79	176.51	179.33
ĸ	DRV-	5.96	28.53	187.90	190.14
SGM	DR	3.96	8.78	103.14	103.59
90	DRV	2.42	4. 37	25.60	26.08
ет	DRV-	2.73	5.61	13.44	14.82

VLB1はSとXの両方を含む。

(単位:メートル)

ス、データの重みは・・・ D=0.2mm/s R=0.7m

V = 1 c m

精密軌道決定:おうな

Overlaps during Edge-on Geometry

モデル	データ	R	Α	С	計
LP	DR	Z . 05	26.16	263.24	264.55
100	DRV	1.52	14.32	147.44	148.14
ĸ	DRV-	1.53	14.72	151.83	152.55
SGM	DR	2.55	23.00	229.56	230.72
90	DRV	1. 23	6.39	20.06	21.09
еm	DRV-	1.30	5.74	8.01	9.94

VLB1はSとXの両方を含む。

(単位:メートル)

ス、データの重みは・・・ D=0.2mm/s R=0.7m

V = 1 c m