SELENEのVLBIとDoppler技術を 用いた月重力場の計測

劉慶会 菊池冬彦 花田英夫 Sander Goossens 松本晃治 河野宣之 浅利一善 鶴田誠逸 石川利昭 原田雄司 石原吉明 岩田隆浩² 並木則行³ 野田寛大 佐々木晶 柴田克典 岩館健三朗 田村良明 寺家孝明 酒井俐 VERA team

National Astronomical Observatory of Japan (RISE+VERA); ²JAXA, Japan; ³Kyushu University, Japan

Kaguya(SELENE)

Selenological and Engineering Explorer

Two techniques for lunar gravity field

Doppler technique (Sensitivity in line-of-sight) Spin influence on Doppler measurement Remove spin influence using LPF Orbit determination Global lunar gravity field Phase characteristic of onboard antenna Differential VLBI technique (Sensitivity in direction perpendicular to LOS) **SELENE VLBI observation** Differential phase delay Orbit determination

Gravity experiment by 2- and 4-way Doppler in SELENE

Sensitivity in line-of-sight

(1) 4-way Doppler of main-satellite for far side(2) 2-way Doppler and range of Rstar and Vstar(3) Doppler and range of satellites for near side

Doppler data, Time interval 0.1s

RMS is larger than the desired accuracy **0.0033Hz**(0.2mm/s) even if by using 10 s integration

Irregularities in the phase characteristics of antennas onboard spin satellites

S/X Dipole antenna for Doppler and VLBI

Patch Antenna link Rstar and Main

Octagonal prism body

Qinghui Liu

et. al ``New method of measuring phase characteristics of antenna using Doppler frequency measurement technique",

IEEE Trans., Antenna and Propa., 3312-3318, 2004. Qinghui Liu

et. al ``Effect of In-situ Phase Characteristics of Antennas Onboard Spin Satellites on Doppler Measurements for lunar gravity field ", **IEEE Trans.**, A&M, (submitted)

Influence on Doppler measurement:

Rstar

(Vstar)

- **2WAY:** phase characteristics of S-band antenna + octagonal prism body
- 4WAY: phase characteristics of S- ,X-band and patch antennas + octagonal prism body + offset of patch antennas from the rotation axis

Doppler-Residual Spectrum (harmonic components of n*fs)

7

Remove spin influence using LPF

Linear phase LPF using Kaiser window function

Kaiser function

Important to give a suitable value for

Sorry! 10 pages (10-20) were deleted for Doppler

Summary on Doppler technique

(Sensitivity in line-of-sight)

- 1. 2way-Doppler: 0.1mm/s RMS @ 0.1s after LPF
- 2. 4way-Doppler can also be determined at a high accuracy after LPF, and the gravity signals on the far side were detected firstly.
- 3. SELENE lunar gravity field model: SGM90e

Differential VLBI technique

(Sensitivity in direction perpendicular to LOS) SELENE VLBI observation Differential phase delay Orbit determination

Why do VLBI observations in SELENE?

Simulation results

VLBI observations in SELENE (Sensitivity in direction perpendicular to LOS)

SELENE MAIN and other spacecrafts Bandwidth 10MHz

Group delay g = phase/freq.

When error of phase is 3.6 deg, Error of **group delay** 3.6/360/**10M=1ns**

Origin of phase fluctuation

- frequency variation of radio wave
- (temporal, spatial)
- · ionosphere
- · atmosphere
- ·thermal noise
- phase variation in receiver

Atmospheric phase fluctuation

Qinghui Liu, et. al, IEEE Trans., Antenna and Propa., Apr. 2005.

Nishio Masanori, Qinghui Liu, et.al, IEEE Trans.,

Antenna and Propa., July 2007.

•System is nearly same •Elongation is small

ionosphere are nearly canceled

Kikuchi, Liu et. al, 2008

Stations for SELENE VLBI observations

Observation system

Correlation Processing (soft correlater)

Procedure and conditions for obtaining phase delay

procedure condition $N_{s2} - N_{s1} \ 0.001639 |\Delta D_s| + 0.006 |\Delta \tau_s| + 0.003928 |[[\sigma_s]]| < 0.5 \text{ Eq.1}$

$1. N_{s2} - N_{s1} 0.00103$	$59 \Delta D_s +0.9$	$000 \Delta au_s $ +0.00	$5920 [[0_s]] < 0.3$) LY.1
6MHz		<83 ns		
2. $N_{s3} - N_{s1}$ 0.04926	$\delta [[\sigma_s]] + 0.0$	$00618 \Delta D_s <$	0.5	Eq.2
75MHz <	<10.2 deg			
3. N_{s1} 0.1159	$[[\sigma_s]] + 1.19$	$17 \Delta D_s < 0.5$	5	Eq.3
2212MHz	<4.3 deg	<0.42TECU		
4. N_x 0.0110	$[[\sigma_x]] +8.456$	$\Delta \tau_{xs} + 2.1573$	$\Delta D_s < 0.5$	Eq.4
8456MHz	<45.6 deg	<59 ps	<0.23 TECU	

Sorry! About 20 pages were deleted for VLBI

Close phase delay 20080120

VERA: Ishigaki, Iriki, Mizusawa, Ogasawara

bas	eline	IS-IR	IS-MZ	IS-OG	MZ-IR	MZ-OG	IR-OG	close delay (n	S) close delay
10:31-45	Start time	10:31:30	10:31:30	10:31:30	10:31:30	10:31:30	10:31:30	IS/IR-IS/MZ-MZ/IR	S/IR-IS/MZ-MZ/OG+IR/OC
	Ns2-Ns1	0	0	0	0	0	0	0	0.001
	Ns3-Ns1	0	0	0	0	0	0	MZ/IR-MZ/OG+IR/OG	S/MZ-IS/OG+MZ/IR+IR/OO
	Ns1	-7	-14	-5	7	9	2	0.001	0.002
	Nx	*	*	*	*	*	*	IS/MZ-IS/OG+MZ/OG	MZ/IR-MZ/OG-IS/IR+IS/OC
	good dela	s1	s1	s1	s1	s1	s1	0.001	-0.001
	value	-3.508	-7.045	-2.338	3.537	4.708	1.172	IS/IR+IR/OG-IS/OG	
	at time	10:37:30	10:37:30	10:37:30	10:37:30	10:37:30	10:37:30	0.002	S-band 2PI= 0.452 ns

Hobart, Shanghai, Urumqi, Ishigaki

bas	eline	HO-UR	HO-SH	HO-IS	SH-UR	SH-IS	UR-IS	close delay	(ns) close delay
10:31-45	Start time	10:35:30	10:35:30	10:35:30	10:35:30	10:35:30	10:35:30	io/ur-ho/sh-sh/u	HO/UR-HO/SH-SH/IS+UR/IS
	Ns2-Ns1	0	0	0	0	1	1	0	-13.563
	Ns3-Ns1	-2	-1	0	0	2	1	SH/UR-SH/IS+UR/IS	HO/SH-HO/IS+SH/UR+UR/IS
	Ns1	-51	-38	-1	-13	37	20	-13.563	-13.563
	Nx	*	*	*	*	*	*	Ho/SH-Ho/IS+SH/IS	SH/UR-SH/IS-HO/UR+HO/IS
	good delay	s1	s1	s1	s1	s1	s1	0	0
	value	-29.157	-21.815	-4.4	-7.342	17.415	11.194	Ho/UR+UR/IS-HO/IS	5
	at time	10:40:30	10:40:30	10:40:30	10:40:30	10:40:30	10:40:30	-13.563	S-band 2PI= 0.452 ns

Correct atmospheric delay--GPS + Niell Mapping function

SELENE8局のGPSデータをIGS或いは天文台のvgrからDownload し、 GpsTools 解析ソフトを用いて各局の天頂方向の大気遅延ZTDを推定する。 推定精度:10mm; 時間間隔:1分或いは5分。

		X (m)	Y (m)	Z (m)	距離 (m)	高度 (m)
水沢	VLBI	-3857241.85	3108784.791	4003900.608	189.58231	116.523
mizw	GPS	-3857164.39	3108693.067	4004047.332		117.7
入来	VLBI	-3521719.59	4132174.674	3336994.224	42.582571	573.522
irik	GPS	-3521735.46	4132137.51	3337007.646		565.287
石垣	VLBI	-3263994.73	4808056.288	2619949.219	40.688873	65.026
isgk	GPS	-3263984.04	4808036.484	2619983.118		58.65
父島	VLBI	-4491068.81	3481544.791	2887399.567	40.097662	273.048
ogsa	GPS	-4491042.33	3481573.606	2887390.838		266.157
上海	VLBI	-2831686.91	4675733.666	3275327.69	92.159441	29.43
shao	GPS	-2831733.57	4675666.07	3275369.496		22.209
ウルムチ	VLBI	228310.72	4631922.795	4367063.988	83.694217	2033.205
guao	GPS	228380.79	4631962.42	4367041.08		2048.67
Hobart	VLBI	-3950236.74	2522347.561	-4311562.54	193.62816	65.105
hob2	GPS	-3950074.52	2522418.574	-4311640.86		46.055
Wettzell	VLBI	4075539.899	931735.27	4801629.352	138.30185	669.124
wtzr	GPS	4075578.273	931852.7652	4801567.306		663.796

各局のVLBIとGPS受信機の位置。近く設置。

Differential phase delay bias in SELENE: several ps

Summary

Differential VLBI technique in SELENE

- 1. Same-beam VLBI observations were performed
- 2. Differential phase delay can be obtained by
 - high accuracy **several ps** + little bias <several ps
- 3. Orbit-determination accuracy several meters

