

JVNIによる 6.7 GHz メタノールメーザの 内部固有運動計測

山口大学大学院 博士後期課程 1年 杉山 孝一郎

- 1. 6.7 GHz メタノールメーザ
- 2. Cepheus A
- 3. Onsala 1
- 4. まとめ・今後の展望

6.7 GHz メタノールメーザ

- 大質量星形成領域の研究(特に大質量星形成過程)
 - 大質量星形成領域のみから検出
 - 非常に強度が強い(水メーザに次いで2番目)
 - スポットサイズがコンパクト: 1-数10AU
 - 非常に若い進化段階をトレース: ~10⁴ 年
- ■アストロメトリの研究
 - サンプル多数: ~800天体 (Pestalozzi et al. 2005 & 無バイアス)
 - スポットが安定: 少なくとも4年
 - 水蒸気の影響を受けにくい => 年中通して観測可能
- ■基本的描像がはっきりしていない
 - 発生場所: 円盤 or アウトフロー(ショック領域)?
 - 励起メカニズム: 赤外線 or 衝突?
 - 強度変動メカニズム: 種光子変動 or 中心星変動?

発生場所1:円盤

NGC 7538 (Minier et al. 2000)

> G 23.657-0.127 Bartkiewicz et al. (2005)

- 直線空間構造 & 直線速度勾配
- Face-on 円盤(Bartkiewicz et al. 2005)
- インフォール? (Goddi et al. 2007)

発生場所2:アウトフロー or ショック

アウトフロー

- 60% 程度が NOT 直線
- 低速度(< 10 km s⁻¹)
- H₂ emission に平行(De Buizer 2003 ←)
- W3(OH) @ 12.2 GHz にて膨張内部
 固有運動 (Moscadelli et al. 2002)
 - ■コニカルなアウトフロー
- 回転分子雲 & 平面ショック (Dodson et al. 2004 →)
 - 視線方向に垂直に伝播
 - 分子雲の回転
 - 回転軸とショック面間に傾斜

研究目的・アプローチ

メタノールメーザの発生場所の特定

- 1. 間接的:他プローブとの絶対位置比較
 - 水メーザ:内部固有運動が計測可能
 - 連続波: UC HII 領域、ダスト放射
 - → 分子輝線:分子アウトフロー、回転円盤・トロイド
- 2. 直接的:内部固有運動計測
 - 2エポック間

観測テーブル with JVN at 6.7 GHz

■ 速度分解能: 0.176 km s⁻¹

■ 合成ビーム(平均): ~7×3 mas²

	Cep A		ON 1	
観測日	2006 / 09	2007 / 08	2006 / 09	2008 / 05
参加局	山,臼,水,石	山,臼,水,石,入	山,臼,水,石	山,水,石,入,笠
積分時間	2.8 hrs	2.1 hrs	3.4 hrs	1.5 hrs
イメージ感度*	160	150	150	80

*:単位はmJy beam⁻¹

Cepheus A

Cep A --- I: 空間分布

- 1400 AU の拡がり
- 速度の大きい成分を小さい成分が包囲
 - 全て systemic velocity (-11 km s⁻¹) に対して赤方偏移
- 円弧状の空間分布 => 楕円でフィッティング
- 明確な速度勾配は見られない
 - 単純な回転運動ではない

楕円フィッティング with メタノール分布

楕円でフィッティング

長径:690 AU, 位置角:110°, 傾斜角:73°

Cep A --- II: 重ね合わせ

- ■電波ジェットに垂直 - PA差:~70 deg
- ■中心に星の存在 - 楕円のほぼ中心

- ■CH₃CN, NH₃回転円盤 に一致
 - サイズ、速度範囲共に
- 水メーザ、SO₂回転円盤とも一致
 - サイズは半分
 - 水メーザは高速回転

回転円盤に付随の可能性

Cep A --- III: 回転 & 膨張モデル

$$V_{\rm LSR} = \underbrace{v_{\rm sys}} + \underbrace{v_{\rm rot}} \cdot \frac{x'}{R} \cdot \sin i + \underbrace{v_{\rm exp}} \cdot \frac{y'}{R} \cdot \tan i$$

$$\begin{cases} x' = (x - x_0)\cos\theta + (y - y_0)\sin\theta \\ y' = -(x - x_0)\sin\theta + (y - y_0)\cos\theta \end{cases}$$

- 円盤の回転 + 膨張モデル(Uscanga et al. 2008, Torstensson et al. soon.)
 - **──** 回転 + 膨張 !!
 - 南西ジェットが青方偏移(Rodriguez et al. 1980) & メーザスポット赤方偏移に矛盾しない
 - 速度が小さい,中心質量も大質量星に満たない・・・

内部固有運動の計測が必須!! (現在3エポック目解析中)

ON 1 --- I:空間分布

- 視線速度分離~15 km s⁻¹
- V_{sys}~12 km s⁻¹ を境界
 - $H76 \alpha : 5.1 \pm 2.5 \text{ km s}^{-1}$
- 空間的分離~1800 AU
 - 北東-南西方向

ON 1 --- II: 重ね合わせ

- UC HII 領域に付随
 - OHメーザと一致
 - ■膨張運動
 - 水メーザとは励起源が別
- H¹³CO⁺, SiOフローと一致
 - 北東-南西方向(PA ~44 deg)
 - 低速: 4.5 km s⁻¹
 - 空間スケールは異なる
- 速度傾向は類似
 - 北東:青方,南西:赤方
 - メーザの方が高速
 - H¹³CO⁺が示すハッブルフロー には矛盾

Nagayama et al. (2008) の図を改変

2エポック間での 内部固有運動の計測

ON 1 --- III: 内部固有運動

- ■2エポック間
 - $-2006/09 \ge 2008/05$
- ■低速運動
 - $-1.8 \sim 4.4 \text{ km s}^{-1}$
 - ■H¹³CO+に一致
 - 北東-南西方向?
 - 分子アウトフロー?

アウトフローに付随?

ON1 --- IV: OHメーザとの比較

Fish & Reid (2007) の図を改変

■ OHメーザ

- 膨張内部固有運動 (Fish & Reid 2007)
- UC HII 領域の膨張運動をトレース
- CH₃OHメーザ
 - OHメーザと類似
 - ■運動方向
 - ■空間分布
 - ■視線速度

UC HII 膨張運動 をトレース?

まとめ

- 6.7 GHz メタノールメーザの発生場所
 - Cepheus A
 - ■円弧状分布: 楕円でフィッティング
 - ■電波ジェットにほぼ垂直
 - ■中心に星の存在
 - ■CH₃CN, NH₃回転円盤に一致:分布、速度幅共に
 - ■回転 & 膨張モデルの妥当性

回転 & 膨張円盤の可能性

- Onsala 1
 - ■空間的、視線速度的に分離
 - ■H¹³CO+, SiO 分子アウトフローと一致
 - ■メタノールメーザの内部固有運動:双極フロー?
 - ■OHメーザ膨張運動との関係
 - 分布 & 視線速度 & 方向の一致 => 膨張?

アウトフロー or UC HII 膨張運動?

今後の展望

- 6.7 GHz メタノールメーザの発生場所解明へ向けて
 - 内部固有運動の統計的研究(3エポック:1年間隔)
 - 北天一JVN: Cep A, ON 1, W75 N, Mon R2, G 9.62+0.20, G 24.78+0.08, W3(OH), etc...
 - 南天一LBA: G 320.23-0.29, G 308.92+0.12, G 331.13-0.24, etc...
- ■年周視差・絶対固有運動計測へ向けて
 - 位相補償
 - Cep A(杉山)、W3(OH)(礒野)の2天体で成功
 - VLBA@12.2GHzで計測済み(Reid et al., Xu et al. 2006)
 - ON 1(杉山)、S 269(澤田-佐藤)はあと一歩
 - EVN@6.7GHz で既に計測済み or 計測中 (Rygl et al. 9th EVN Symp.)
 - ■本格的に天体選出を!