VERA UM 2009年9月2日

VERA観測システムの 現状と今後

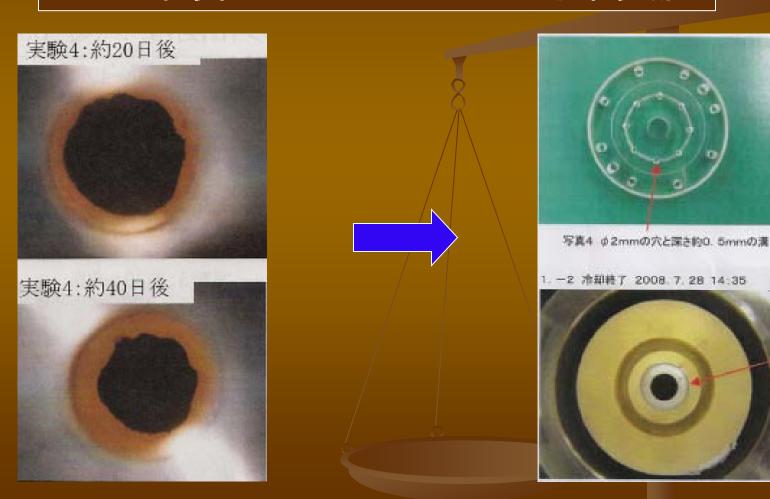
水沢VLBI観測所開発グループ 川口則幸、河野裕介、鈴木駿策、 小山友明、原 哲也

VERA観測システム

	Kバンド 🦍	Qバンド	
開口効率	47. 6%	40. 4%	
受信機雑音温度	39±8 K	81±7 K	
背面結合温度	25 K	25 K	
フィドーム損失	16 K L=0.24dB	33 K L=0.51dB	
大気輻射雑音温度	60 K T=0.12, El=30 deg	55 K T=0.10, El=30 deg	
システム雑音温度	140 K	200 K	

開発の現状(1)

- アンテナ
 - 2枚膜フィドームを上野氏が開発、水沢局に搭載
 - 』水のしみこみ対策を実施中
 - 』2局目の製作予定
 - 定期保守作業(6-7月)
- 受信機
 - メタノール受信機の搭載とVERA4局での観測を開始 (本間)
 - 電波窓に発生する霜の生成経路がほぼ解明。簡易な対 策も可能に
 - QバンドLO(ガン発振器)の交換(固定バックキャビティ)


メタノール受信機

- ■大阪府立大学チームが ※製作
- 制測時に設置
- 6.7Gの常温受信機
- VERA4局観測を開始

電波窓に発生する霜

2009年度のメンテナンスで対策実施

開発の現状(2)

- 磁気テープレコーダ
 - VERA-2000が稼動を開始
 - 」2段階ECCによりエラーレート10-6を達成
 - ■バックプレーンにまだ問題が残っている
 - 不平衡線路で平衡信号伝送を行ってしまった
 - 2014年度で磁気テープ運用は終了
- ■磁気ディスクレコーダ
 - FVSI4000/FDR1000が稼動を開始
- 広帯域観測システムの開発を開始

磁気テープレコーダ VERA2000

- VERA/KVN連携観測
 - DIR-2000で記録したVERA観測データはソウル 相関局へ
 - ソウル相関局においてDIR-2000テープはVERA-2000で再生
 - VERA-2000再生データはディスクバッファ (RVDB)で一時格納
 - KVN観測データ(MK-Vb)もRVDBに一時格納
 - RVDBは同時刻データを同時に再生し、相関器へ 伝送

1G再生専用機: VERA2000

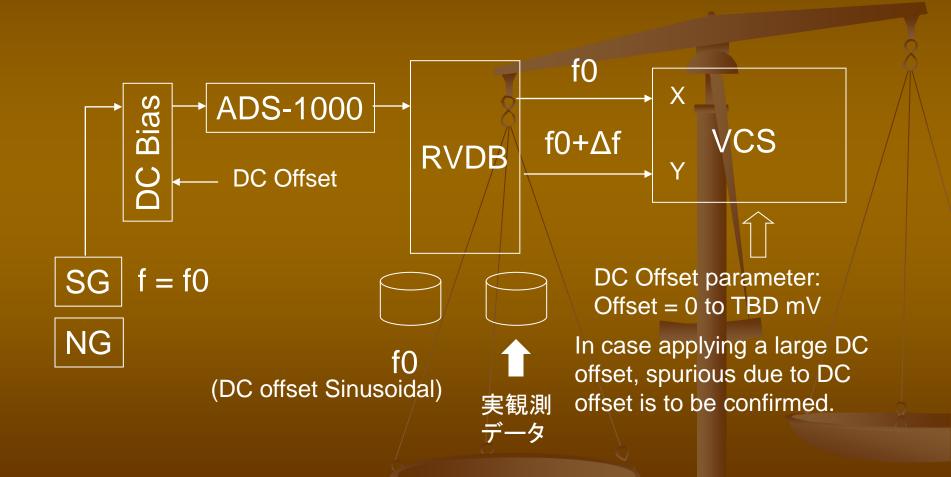
- DIR-1000(256M機)を官給
- DIR-2000(1G録再機)の ヘッドを官給
- バックパネル、再生ボードの 新規設計、アセンブル
- VSIデータの直接出力
- エラーレート10-6を達成
- 10月にソウル移設

ファンテックディスクレコーダ

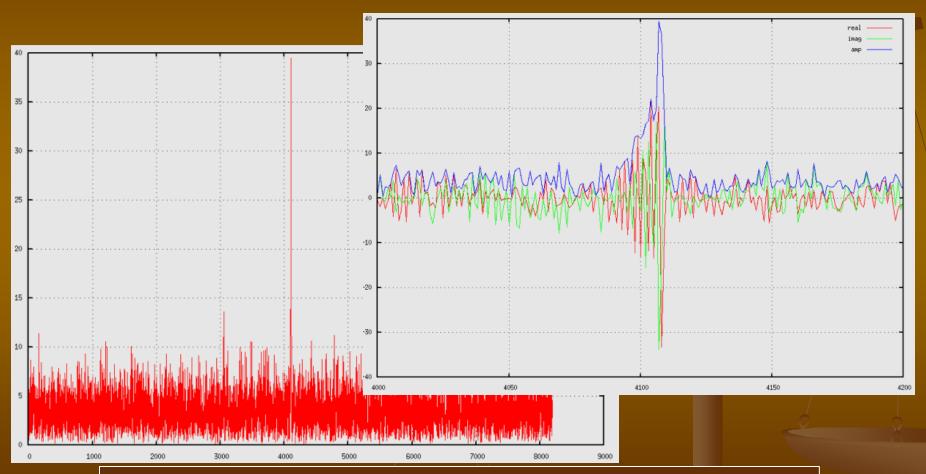
FVSI-4000

VMAT (試験装置)

FDR-1000


ファンテック FDR-1000

開発の現状(3)


- ソフトウェア相関器(小山)
 - 2007年度で5局10基線相関システムが完成
 - 2008年度に試験運用を行いつつバグ修正
 - 2009年度に運用システムの整備
 - ■相関結果のD/B記録
 - 」一連の相関処理パスを確立
 - 磁気テープ→K5磁気ディスク
 - ソフトウェア相関処理
 - 相関処理結果のD/B化(CODA)

ソウル相関局開発支援

■ソウル相関器試作機・本作機

実観測データによる初フリンジ

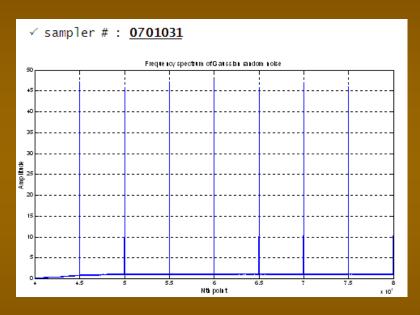
本作機試験を2009年5月18日の週に実施

日本担当の開発機器

VERA-2000

- ■DIR-1000 is modified
- ■for 1Gbps playback.
- ■VSI output available.
- ■Two sets are prepared.

VDB-2000



- ■Basic Unit
- -10GbE SW
- ·DIO
- \cdot DDB × 4

■4 sets of VDB-2000 are prepared.

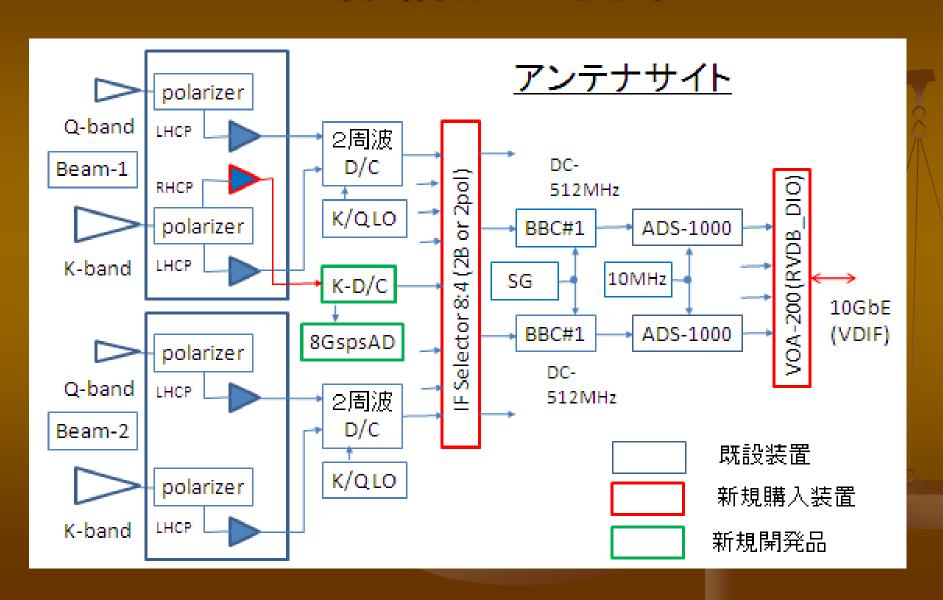
KVN観測システム支援

高速サンプラ(ADS-1000)でスプリアス発生

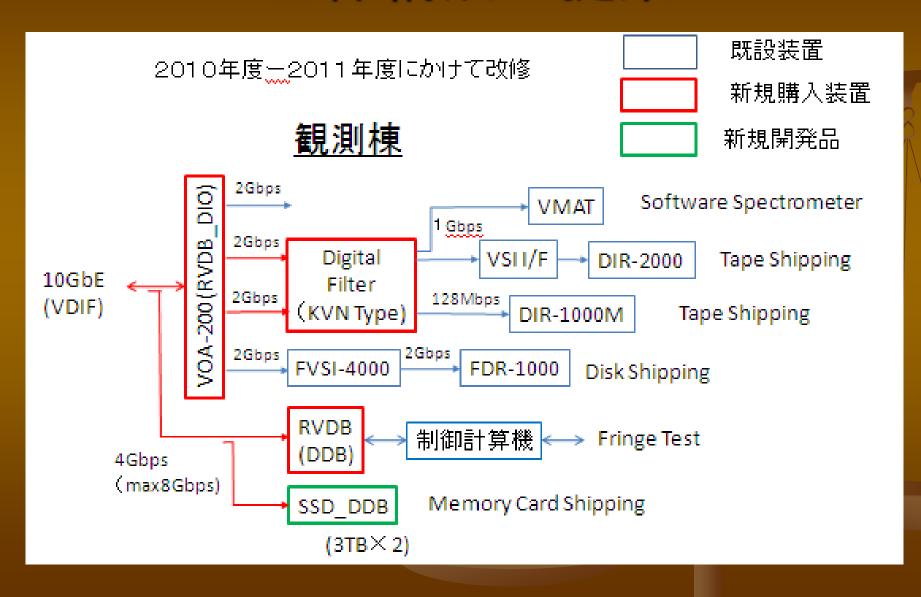
スペクトル解析ソフト by 木村 LVDS出力の1ビットが動作不良 過大なアース電位差でチップ破損?

不感帯幅の計測等の特性試験・調整指導

Unit	#031	#035	#036
不感帯幅	2. 9 mV	5.8 mV	2. 1 mV


VERA広帯域化

レコーダからディスク・半導体メモリへ 広帯域化による高感度化


広帯域化の基本方針

- 磁気テープ記録は2013年度で終了
 - 消耗品(磁気ヘッド等)の最終調達は20011年度
- 2014年度からは広帯域化対応新観測システムで本格運用
 - 2009. 2010年度(2011年度まで持ち越し?)で整備
 - 2012, 2013年度は移行年度
 - 2014年度から本格運用
- VSOP2地上観測局として2偏波化にも対応する
 - 周波数変換器の増設は内作で対応することも検討
 - 2偏波化は22GHz帯1ビームのみとする
- 広帯域化の目標は当面4Gbpsとする
 - 2Gbpsチャネルの増設(現状は2チャンネル)もしくは超高速サンプラの導入も視野に入れる。8Gbpsが最終目標

全体構成の提案

全体構成の提案

今後の課題

- 偏波観測システムの整備(VSOP2対応)
- 磁気テープ記録からディスク記録へ
- FX相関器からソフトウェア相関器へ
- 広帯域化(1Gbps→4Gbps→8Gbps)
- VERA/KVN共同観測(2010年度)
- 低雑音化(背面結合雑音の除去など)
- DECADEバンド給電部と超広帯域フルデジタル受信機
 - 2/6. 7/8/22GHz帯を単一受信機で観測