GENJI プログラム：
 電波銀河3C84のモーター観測結果

日浦皓一朗 ${ }^{1}$ ，永井 洋 ${ }^{2}$ ，徂徠和夫 ${ }^{1}$ ，秋山 和徳 ${ }^{2,3}$ ，他 GENJIプログラムメンバー北海道大学，${ }^{2}$ 国立天文台，${ }^{3}$ 東京大学

Abstract

国立天文台VERAを用いたAGN ジェットモニタリングプログラム「GENJI（Gamma－ray Emitting Notable－AGN Monitoring by Japanese VLBI）」では，現在 8 天体を $1-2$ 週間に 1 回の頻度でVLBIモニター観測を行っている。
今回は，そのうちの一つである電波銀河3C84の解析の途中経過を報告する。3C84は，赤方偏移z＝0．0176に位置する非常に明るい電波源であり，母銀河は巨大楕円銀河NGC1275である。3C84はFermi r 線望遠鏡の観測からGeV r 線が 1990 年代に比べて 7 倍以上明るくなっていることがわかっており 11 ，また特に2005年頃から電波増光が起こり，その後，中心核から新たに放出された成分が運動する様子が確認されている［2］。長いタイムスケールで r 線増光と電波増光の傾向が良く一致して いることから，r線放射領域と電波増光の発生場所の密接な関係を示唆していると考えられる。
GENJIプログラムが始まった2010年11月以降は，目立った r 線変動は報告されていないので，今のところ r 線変動との関係を明らかにするに至っていない。 しかし，より高エネルギーの電子からの放射が卓越していると思われるサブミリ波帯のデータとの比較から，サブミリ波の変動とVLBIコアの変動には目立った相関は見られないことがわかった。一方，下流側にあるジェット成分の変動はサブミリ波の変動と似ていることがわかった。
また，構造変化の速度を見積もったところ，Nagai et al． 2010 のデータと比べてジェット成分の見かけの速度がさらに減速していることがわかった。

GENJIとは

GENJIプログラムは国立天文台が所有するVERAを用いて，r 線AGNに対して約2週間に 1 回の高頻度でモニター観測を行い下記のテーマに取り組んでいる。

（i）VLBIコアフラックスとガンマ線フラックスの変動の関係

$\Rightarrow r$ 線源の所在とVLBIコアの本質の解明

（ii）ジェットの下流領域あるいは空間的に広がった成分のフレア有無の調査 （e．g．M87におけるHST1）
（iii）ジェットの固有速度と， y 線放射から期待されるローレンツ因子の関係

観測

－観測装置：VERA（右図）
周波数： 22 GHz
空間分解能：～1 mas＠22 GHz バンド幅： $176 \mathrm{MHz}(16 \mathrm{MHz} \times 11 \mathrm{IF})$
観測天体 3C84
電波銀河 ；z＝ 0.0176 （ 75 Mpc ）
－ $0.35 \mathrm{pc} / \mathrm{mas} ; 1 \mathrm{c}=0.87 \mathrm{mas} / \mathrm{yr}$

観測天体 3C84

巨大楕円銀河NGC1275の活動銀河核電波源
（Seyfart 2， $\mathrm{M}_{\mathrm{BH}}=3 \times 10^{8} \mathrm{M}_{\odot}$ ）
－1990年代に比べて $\mathrm{GeV} r$ 線が7倍以上増光［1］。

長いtime－scaleで電波増光と r 線増光の傾向が良く一致
－Fermi による検出以降，2回の r 線フレアが発生［3］

r 線と電波の長期変動の様子（左：［1］）とFermi による検出以降の光度曲線（右：［3］）

結果

－2005年頃からVLBI観測により1 pc以内の中心核で電波增光を確認［2］

電波光度変動（左）と，増光に伴って出現した成分（C3）の様子（右）［2］
－ジェット成分の見かけの速度が，中心核 から遠ざかると減速することが判明［2］

中心核（C1）に対する，増光に伴って出現した成分（C3）の距偪の時間変化［2］

- 全4エポックのイメージとモデルフィットマップ
- C1 は中心核成分で，C3 は2005年の電波フレアに起因して放出されたジェット成分 －C1－C3 間の距離は約1．5（mas）で，見かけの速度は約0．17c（下図参照） － C 2 は2005年のフレアが起こる前から存在。ほぼ動かず定在。

4C1 とC3 の中心位置間の相対距離の時間変化線形膨張を仮定して速度を概算
\Rightarrow 見かけの速度は約 0.17 c
\Rightarrow 2007／297以後（0．23c［2］）よりもさらに減速している。
\square

まとめ

一方，VLBIコア（C1）は変動が見られなかった。－成分毎の光度曲線とサブミリ波データとの比較
C1 は変動なし，C2•C3 でわずかに変動している。
－GENJI 開始後，目立った r 線変動が報告されていないので，より高 エネルギー領域をトレースできるサブミリ波データ（SMA＠1mm［4］）と の比較を行った。
\Rightarrow サブミリ波の振る舞いは $\mathrm{C} 2 \cdot \mathrm{C} 3$ と似ている？

- サブミリ波データとの比較により，サブミリ波のわずかな時間変動に対応して，ジェット成分（C2，C3）の変動が見られた。
- C3のC1に対する見かけの速度が文献［2］のデータよりもさらに減速していることがわかった。

高エネルギー放射領域への，より厳しい制限を課すためにも，さらなるデータの蓄積および解析を行っていきたい。

