2013/10/02-03 11th 水沢VLBI観測所-UM @ 三鷹, NAOJ

Astrometry of the H_2O Masers in the Periodic Flux Variation Source G12.681-0.182 (VERA11-72)

杉山 孝一郎 (山口大学 大学院理工学研究科 藤沢研究室)

Collaborator: 元木業人, 藤沢健太 (山口大学), 本間希樹 (国立天文台), 米倉覚則, 百瀬 宗武 (茨城大学), 蜂須賀一也 (上海天文台), 稲吉恒平 (京都大学), 田中圭 (東北大学), 細 川隆史 (東京大学), 内山瑞穂 (東京大学), S. Ellingsen (UTAS), J. A. Green (ATNF)

周期的な CH₃OHメーザー強度変動

6.7 GHz CH₃OHメーザー: 周期変動

□ 大質量星周囲では珍しい現象

□ 全スペクトル成分間で同期

☞ 励起源近傍 or 星表面で生じる物理現象!?

G331.13-0.24 のCH₃OHメーザー周期強度変動 (Goedhart+04,07)

6.7 GHz CH₃OHメーザー: 周期変動

□ 大質量星周囲では珍しい現象

□ 全スペクトル成分間で同期

☞ 励起源近傍 or 星表面で生じる物理現象!?
 □ 周期: 30-670日

G331.13-0.24 のCH₃OHメーザー周期強度変動 (Goedhart+04,07)

6.7 GHz CH₃OHメーザー: 周期変動

□ 大質量星周囲では珍しい現象

□ 全スペクトル成分間で同期

☞ 励起源近傍 or 星表面で生じる物理現象!?
 □ 周期: 30-670日

□傾向は連続的 or 間欠的 の両方存在

G009.62+0.20 E のCH₃OHメーザー周期強度変動 (Goedhart+ 03, 04)

周期変動天体:これまでのまとめ

□ 周期変動天体数
- 11天体
+ 1天体 (山口大: 高瀬, 藤沢)
□ 周期: 30-670 日
□ "YSO"に多い (8/11)
□"連続的"が多い(8/11)
□ 既存連星モデル CWB

が説明困難

van der

周囲に卓越した電離領域
 (HII領域など)が必須

valu 11/

Source	Period	出現時期	変動傾向
009.62+0.20	244	HC HII	間欠的
012.68-0.18	307	UC HII ?	連続的
012.88+0.48	29.5	YSO	連続的
022.35 ± 0.06	179	YSO	間欠的
037.55 ± 0.20	237	YSO	間欠的
188.95 ± 0.88	404	HC HII	連続的
196.45-1.67	668	YSO	連続的
328.23-0.54	220	YSO	連続的
331.13-0.24	504	YSO	連続的
338.93-0.06	133	YSO ?	連続的
339.62-0.12	201	YSO	連続的
IRAS 22198	34.5	中質量?	間欠的

Goedhart+ (04, 07, 09); Araya+ (10); Szymczak+ (11); Fujisawa+ (in prep).

大質量原始星の脈動不安定モデル (Inayoshi et al. 2013)

□星の脈動解析

- 星内部構造モデルがベース (Hosokawa & Omukai 09)
- 様々な進化段階、および 質量降着率に対して実施
- □膨張半径最大時に
 - 不安定帯が存在
 - κ機構
 - $-~>10^{\cdot3}\;{\rm M_{\odot}/yr}$
 - ~1000 yr 滞在

□ CH₃OHメーザー周期変動を説明可能

- 原始星時代の変動
- 連続的な変動
- HII領域必要ナシ

大質量原始星の脈動不安定モデル (Inayoshi et al. 2013)

□星の脈動解析

- 星内部構造モデルがベース (Hosokawa & Omukai 09)
- 様々な進化段階、および 質量降着率に対して実施
- □膨張半径最大時に
 - 不安定帯が存在
 - κ機構
 - $-~>10^{\cdot3}\;{\rm M_{\odot}/yr}$
 - ~1000 yr 滞在

□ CH₃OHメーザー周期変動を説明可能

- 原始星時代の変動
- 連続的な変動
- HII領域必要ナシ

予言される 周期・光度関係(P-L relation: Inayoshi+13)

周期-光度関係の恩恵

 □原始星表面の物理パラメータ(質量、光度、 半径、質量降着率)が取得可能に!
 – sub-AUスケール
 •現存装置(ALMA含む)ではおよそ観測不可能な領域
 – それを低空間分解能な単一鏡で実行可能!

$$M_* = 17.5 \ M_{\odot} \left(\frac{P}{100 \ \text{days}}\right)^{0.30},$$
$$R_* = 350 \ R_{\odot} \left(\frac{P}{100 \ \text{days}}\right)^{0.62},$$
$$\dot{M}_* = 3.1 \times 10^{-3} \ M_{\odot} \ \text{yr}^{-1} \left(\frac{P}{100 \ \text{days}}\right)^{0.73}$$
$$(\text{Inayoshi+ 13})$$

予言される 周期・光度関係(P-L relation: Inayoshi+13)

予言される 周期・光度関係(P-L relation: Inayoshi+13)

本研究の目的

□最終ゴール

- - 大質量原始星周囲で予言される脈動不安定現象を 観測的に検証する
 - ① P-L relation の観測的検証・確立
 - ② 周囲の物理環境温度の変動モニター

口本講演では

- 最終ゴール① へのアプローチ
 - 問題点: kinematic distance 天体が多い
 - ・ 解決法: parallax で高精度に距離計測
 - ☞ 天体光度の見積もりに貢献

G12.681-0.182 (W33 B)

□ D_{kin}: 4.5 kpc (near kinematic @Vlsr 56 km/s)
 □ "準"周期的な強度変動 (Goedhart+ 04)
 - 周期: 307 (±60) 日, 全スペクトル成分で同期
 □ IRAS L_{bol}: ~ 4 x 10⁴ L_☉

G12.681-0.182 のCH₃OHメーザー周期強度変動 (Goedhart+ 04)

予言される 周期・光度関係(P-L relation: Inayoshi+13)

VERA共同利用観測 (VERA11-72)

観測·解析概要

□観測

- アレイ: VERA (2ビーム)
- 対象: H₂Oメーザー
- 時期: 2012/01-2013/04
- 回数:6エポック
- 参照電波源: J1818-1705
 - 離角: 1.36°
 - ・ 暗いので"逆"位相補償

Epoch	Obs. code	yyyy/mm/dd
$1 \mathrm{st}$	r 12026b	2012/01/26
$2 \; {\rm nd}$	r 12108b	2012/04/17
3 rd	r 12206a	2012/07/24
$4 ext{ th}$	r 12275a	2012/10/01
$5 ext{ th}$	r 13028b	2013/01/28
6 th	r 13119b	2013/04/29

□解析

- 較正・イメージング: AIPS
- Parallax: VEDA

使用した スペクトル feature

使用した スペクトル feature

Vlsr 61.85 km/s: 使用メーザスポット

□ 強度変動小
 □ 視線速度ドリフト小
 − 少なくとも速度分解能以内で
 □ シングルスポット @ 1ch

参照電波源の逆位相補償イメージ

(暫定)結果

ロ D_{para} : 2.9^{+2.0}_{-0.9} kpc - $\chi^2 \sim 1$ となるように各 計測点の誤差調整 (e.g., Reid+ 09) - 250 µas - $D_{\text{para}}/D_{\text{kin}} \sim 0.6$

(暫定)結果

ロ D_{para} : 2.9^{+2.0}_{-0.9} kpc - $\chi^2 \sim 1$ となるように各 計測点の誤差調整 (e.g., Reid+ 09) - 250 µas - $D_{\text{para}}/D_{\text{kin}} \sim 0.6$

しかし。。。 2.40^{+0.17}_{-0.15} kpc (VLBA: Immer+ 13)

予言される 周期・光度関係(P-L relation: Inayoshi+13)

予言される 周期・光度関係(P-L relation: Inayoshi+13)

- □準周期で連続的な変動ではない?
 307(±60)日周期と誤差が大きい
 "間欠的"な変動は脈動モデルでは説明困難
- □赤外線フラックスの見積もりの誤差大きい? - IRASは空間分解能が不足
 - ・各YSOへの分離困難
 - SEDモデル (Robitaille+ 06) 自体の改善・利用が必要

□理論予言線の傾きが異なる?
– 今後の観測成果を踏まえたフィードバックが必要

まとめ

□大質量原始星の脈動不安定モデルの出現
 − CH₃OHメーザー周期変動の要因として適当
 − 原始星表面の物理パラメータ取得に大きく貢献!?
 □P-L relation の観測的検証・確立を目指して
 − 周期変動天体の年周視差計測

- G12.681-0.182: $D_{\text{para}} = 2.9^{+2.0}_{-0.9}$ kpc - $D_{\text{para}}/D_{\text{kin}} \sim 0.6$
- 理論予言線から遠ざかる方向へ改定
 - 間欠的? 赤外線フラックスの見積もり不足?
 - 理論モデルへのフィードバックも大いに必要

□個別:G12.681-0.182

- 他に使用可能なスポットサーベイ
- 参照電波源に対するセルフキャルで構造の有無を調査
 全体
 - P-L relation の観測的検証・確立
 - 南半球でも同様な年周視差計測を計画・実施
 - サンプル数の増加を目指した、大規模な長期高頻度
 単一鏡モニター(日立32-m @茨城大学 で実施継続中)
 - 周囲の物理環境温度の変動モニター
 - ・円盤由来の温度変動を近・中赤外線モニターで観測(PI:内山)
 - ALMAでダスト温度変動モニター!?