第12回水沢VLBI観測所UM 2014/09/24-25

G353.273+0.641に対する 年周視差計測とジェット見込み角の推定

元木業人

山口大学 時間学研究所 学術振興会特別研究員PD

Collaborators: 新沼浩太郎、蜂須賀一也、藤沢健太(山口大学) 徂徠和夫 (北海道大学)、杉山孝一郎、米倉覚則(茨城大学) 本間希樹、廣田朋也(NAOJ)、Andrew. J. Walsh (Curtin Univ.)

G353.273+0.641

- 雛形的な青方偏移卓越型メーザー
- Pole-onの大質量原始星ジェットに付随?

(Caswell & Phillips 2008)

ATCA Spectrum of G353.273+0.641 from Caswell & Phillps (2008)

NGC6357中の水&メタノールメーザー源

- さそり座の輝線星雲
 NGC6357に付随
- 測光距離1.75 kpc
- 南天側 Dec ~-34°
- HII領域の背景に 大質量クランプ

NGC6357の3色(Spitzer 3.6, 8, 24µm)合成イメージ (Fang+ 2012)

母体クランプと中心星

AGAL353.272+00.641 IRAC + 870 µm Contours

APEX GALカタログより...

ダスト温度10 Kを仮定すると 母体クランプ(0.7 pc)質量は 2.3×10³ M_{sun}程度

中心星光度〜10⁴ L_{sun} →ZAMS換算で 〜10 M_{sun}に相当

VERAによるH₂Oメーザー観測

OSummary of VERA observations

Epoch	Day^a	$ heta_{ m b}$	PA	ΔI^b	σ_1	σ_2^c	$Comments^d$
		$(\max \times \max)$	(°)	$(Jy beam^{-1})$	$(\max \times \max)$	$(mas \times mas)$	
1	183	3.16×0.74	-17.1	0.48	0.15×0.49	-	-
2	323	3.98×0.82	-23.2	0.30	0.92×2.15	-	$T_{\rm sys} \sim 1000 \ {\rm K}$ at OG
3	403	2.63×0.91	-14.1	0.37	0.06×0.24	-	-
4	504	2.57×0.88	-13.2	0.30	0.04×0.16	-	-
5	625	2.86×0.82	-12.3	0.37	0.11×0.48	-	-
6	675	2.79×0.79	-13.3	0.16	0.23×0.98	-	-
7	752	3.15×0.85	-19.5	0.21	0.09×0.25	-	-
8	842	2.59×0.75	-14.1	0.40	0.10×0.41	-	-
9	976	2.84×0.76	-13.8	0.29	0.20×0.80	-	$T_{\rm sys} \sim 2000 {\rm ~K}$ at OG
10	1036	2.79×0.77	-15.0	0.19	0.21×0.77	-	$T_{\rm sys} \sim 1500 \ {\rm K} \ {\rm at} \ {\rm IS}$
11	1069	2.92×0.82	-14.5	0.18	0.36×1.40	0.03×0.02	-
12	1107	2.67×0.91	-7.3	0.23	0.03×0.22	0.28×0.00	-
13	1129	2.56×0.83	-11.7	0.14	0.16×0.75	0.00×0.02	-
14	1164	2.65×0.85	-10.5	0.11	0.09×0.50	2.44×1.81	-
15	1210	3.03×0.78	-16.9	0.20	0.52×1.72	0.08×0.11	-
16	1320	2.84×0.78	-10.0	0.48	0.15×0.88	0.10×0.02	-
17	1398	2.66×0.66	-15.2	0.26	0.33×1.19	0.21×0.00	Three stations without IR
18	1474	2.76×0.85	-11.1	0.16	0.07 imes 0.33	0.00×0.00	-
19	1510	2.60×0.82	-12.8	0.17	0.03×0.13	0.00×0.00	-
20	1547	2.54×0.80	-11.8	0.23	0.11×0.48	1.95×2.65	-
21	1576	2.61×0.84	-10.0	0.22	0.10×0.52	0.26×1.75	-
22	1611	3.27×0.83	-15.7	0.37	0.22×0.78	3.72×0.06	$T_{\rm sys} \sim 1000 \ {\rm K}$ at OG
23	1687	2.59×0.76	-4.7	0.58	0.10×1.31	0.07×0.06	$T_{\rm sys}\sim 2000~{\rm K}$ at MZ and IR

- Epoch 1-8および 15はすでに論文 化済み(Motogi+ 2011b; 2013)
- Epoch11以降は2 つの異なるIF設 定を解析(4 MHz ズレ)

→共通するスポット の位置ズレから解 析の誤差(σ₂)を評価

 a The relative days where January 1st, 2008 is counted as the first day.

 b Typical value in self-calibrated images.

^c Only available in the epoch 11 to 23, where we employed $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$ as a total error.

^d MZ, IR, IS, OG: Mizusawa, Iriki, Ishigaki, Ogasawara station, respectively.

26m 1s.59, -34° 15' 14".9)_{J2000}。等高線はJ-VLA (7 mm)で得られた ダスト連続波の分布。

激しい時間変動

-25

年周視差計測

系統誤差の推定

○モンテカルロ法によって得られた視差fittingの確率分布 破線はBest-fitのガウス分布を示す。

距離計測

- ・ 0.59 ± 0.06 mas (* 系統誤差を追加) ↓ 1.7 ^{+0.19}-_{0.16} kpc
- 測光距離1.75 kpcと
 誤差の範囲で一致

→NGC6357とNGC6334には 奥行き300 pcの差? (Chibueze+ 2014)

内部固有運動

- 時期毎に4つの位置参 照featureを使用。
- 参照featureの運動に ついては相対固有運動 の平均から導出。
- 原点付近で東西方向
 の膨張運動

○G353における内部固有運動ベクトル。青方偏移成分の 中で視線方向からの傾きが25°以下のものを青矢印、25°以 上のものを緑矢印で示した。

Inclination angle

)青方偏移成分のRA方向の固有運動と見込み角の関係。

予想されるgeometry

○予想される2つのアウトフロー構造。黒い矢印は全青方偏移メーザーの見込み角と3 次元速度の大きさを表す。どちらの場合も中心ジェットの見込み角は8−17°程度であり、 ほぼ完全にPole-onと予想される。

まとめ

- G353.273+0.641の年周視差計測に成功した。
- 視差は0.59±0.06 mas → 1.70^{+0.19}-0.16 kpc であり、測光距離とよく一致する。
- ほとんどのメーザーfeatureは視線方向に沿った固有運動を示しており、Caswell & Phillips (2008)のPole-onジェット説を支持する。
- 3次元運動から予想されるジェットの軸は8°-17°である。

→その他詳細は元木まで\(^o^)/