# Key Science Observation of AGNs with KaVA array



## M. Kino (KASI) & B.W. Sohn (KASI) on behalf of KaVA AGN sub-WG

VERA UM 2014 (NAOJ Mitaka)

## Announcement from directors

(copy & paste of Honma-san's e-mail)

## The way to the Large Project

From 2015, we would like to start the KaVA large project (upto ~150h/yr/WG), though it is still subject to change depending on the performance evaluation.

To start the large project from 2015, each sub-WG is asked to complete the following processes.

- 1) Make a presentation at KVN and VERA UM in 2014 on the draft plan of the large project, and call for collaborations from other people (to be open to the community)
- Submit a proposal to the DM by the end of 2014. (cover sheets, 6 pages for science/technical justification + detailed source list)
- Make a presentation on the proposal at the f2f Science WG meeting in 2015 Jan.

## Scientific Motivations

 Understanding physical mechanism of AGN(BH) activities in the Universe.

•testing "B-driven jet paradigm"

•probing "real vicinity of BH"

•exploring "universality & diversity of jets"

## KaVA



KVN: 3 baselines (300 – 500 km) +VERA: 6 baselines (1000 - 2300 km) KaVA: 21 baselines (300 – 2300 km)

# Synthesized beam of VERA & KaVA

VERA

KaVA



KaVA has a beautiful synthesized beam! It enables us to perform imaging analysis for extended-jet structure.

# Imaging capability of KaVA

Niinuma, Lee+ (2014) in press (arXiv:1406.4356)



#### Dynamic Range is improved by a factor of 3.

**VERA UM 2014** 

# Key Science Program of AGN Sub-WG

M87 (1 mas = 140 Rs): testing *B*-driven jet paradigm Sgr A\*(1 mas = 100 Rs): probing real vicinity of SMBH

### **Testing "B-driven jet paradigm"(1/2)** GRMHD Model predicts jet-acceleration around 100~1000 Rs.



Distance from black-hole (Rg unit)

#### Testing B-driven jet paradigm (2/2): KaVA can probe "acceleration"-zone!



## Proving real vicinity of BH (1/4):

KVN+VERA has better (u, v) coverage than VLBA+GBT @ 43GHz.

#### KaVA

#### VLBA+GBT



Pink: KVN only Orange: KaVA Yellow: VERA only

Pink: VLBA+GBT Orange: VLBA only

## Proving real vicinity of BH (2/4)

With angular-size of the radio core  $(\vartheta_{obs})$ ,  $U_e/U_B$  is uniquely determined.

Kino et al. (2014) ApJ, 786, id.5

$$\frac{U_e}{U_B} = \frac{8\pi}{3b^2(p)} \frac{k(p)E_{e,\min}^{-p+2}}{(p-2)} \left(\frac{D_A}{1 \text{ Gpc}}\right)^{-1} \left(\frac{\nu_{\text{ssa,obs}}}{1 \text{ GHz}}\right)^{-2p-13} \\ \times \left(\frac{\theta_{\text{obs}}}{1 \text{ mas}}\right)^{-2p-13} \left(\frac{S_{\nu_{\text{ssa}},\text{obs}}}{1 \text{ Jy}}\right)^{p+6} \left(\frac{\delta}{1+z}\right)^{-p-5}$$

Since the radio core of Sgr A\* is the SSA-thick surface, SSA turnover frequency is identical to the observing frequency itself.

Better measurements of  $\vartheta_{obs}$  by KaVA is critical because  $U_e/U_B$  has strong dependence on  $\vartheta_{obs}$ .

# Proving real vicinity of BH (3/4):

KaVA image of Sgr A\*@43GHz, 2013 Oct 7 (by G. Zhao)



We are on the way of carefully checking of visibility data in details.

#### Proving real vicinity of BH (4/4): "Large-When-Brighter?"



KaVA is able to get better measurements of  $\theta_{obs}$ . Then, we will clarify the origin of the radio emission (RIAF? expanding plasma? jet? ).

## Assignment of data analysis in AGN SWG

(based on one's performance and wishes)

| Sources | Team leaders | Team         | Persons in     | Comments   |
|---------|--------------|--------------|----------------|------------|
|         |              |              | charge of data |            |
|         |              |              | analysis (*)   |            |
| M87     | M. Kino      | AGN SWG      | K. Hada        | KSP source |
| @23GHz  | B.W. Sohn    |              | K. Niinuma     |            |
| Sgr A*  | M. Kino      | AGN SWG      | K. Akiyama     | KSP source |
| @43GHz  | B.W. Sohn    |              | G. Zhao        |            |
| 4C39.25 | B.W. Sohn    | Yonsei Univ. | Yonsei Univ.   | Beneficial |
| @23GHz  |              |              | students       | Use of M87 |
|         |              |              |                | slot@23GHz |
| 3C279   | S-S Lee      | iMOGABA      | S. Kang, J-C   | Beneficial |
| (TBD)   |              |              | Algaba, +      | Use of M87 |
| @23GHz  |              |              |                | slot@23GHz |
| 4C21.35 | S. Trippe    | SNU          | SNU students   | Beneficial |
| @23GHz  |              |              |                | Use of M87 |
|         |              |              |                | slot@23GHz |

Inclusions of these AGN sources will tell us new insights on "universality & diversity of jets "(structural evolution/magnetism/radio/γ-connections).

## Summary

1<sup>st</sup> paper showing KaVA imaging capability has been published (*Niinuma, Lee et al. 2014, PASJ, in press*). Now, we go ahead with AGN KSP.

Towards understanding physical mechanism of AGN (BH) activities in the Universe, we will
test "B-driven jet paradigm" (M87)
probe "real vicinity of BH" (Sgr A\*)
explore "universality & diversity of jets" (4C39.25, 4C21.35, 3C379, M87, Sgr A\*)

# Appendix

## Estimate of request time (~180 hr/yr)

We started AGN f2f meeting at Mizusawa in 2012 July and in this Sci. meeting we present the current version of of KaVA AGN KSP.

- M87@23GHz + three sources (80 hr/yr)
  Monthly monitoring: 10epoch \*8hr = 80 hr
- Sgr A\*@43GHz (60hr/yr)
  Monthly monitoring: 10epoch \*6hr = 60 hr
- EHT campaign (40hr/yr)
  - Short monitoring (Spring): 5epoch \*8hr = 40hr

#### Combination of M87 & Sgr A\* observations might be economical. (This is the way indeed used in EHT observations.) comment by Akiyama



#### Doeleman et al. (2008), Nature

#### measured & intrinsic sizes of Sgr A\*



#### Lu et al. (2011) A&A

#### Size-variability of Sgr A\* (~10% level at Q-band) has been claimed. "Larger-When-Brighter"



## SNU team aims to prove "rapid structure evolution". 4C +21.35 (1222+216) ...





Intensity (contours), spectral index (color scale), and polarization (bars) 15-GHz maps in May 2012 (MOJAVE)



Spectral energy distributions at three observing dates, showing dramatic variability at the highest energies (Ackermann et al. 2014)

- ... is a flaring blazar known for puzzling hard, high energy, intense  $\gamma$  ray outbursts ... shows fast (v/c > 10) outflows with multiple components
- ... has become an intensely monitored test bench for "jet in a jet" models
- ... requires multi-epoch KaVA observations for tracing the rapid structural evolution

#### Yonsei Univ. team aims to "Young Radio Source 4C39.25".



Long-term monitoring is by KaVA is essential since young sources shows year-scale evolutions.

(See also Chida-san's talk on year-scale monitoring of 3C84 by GENJI!)

