VERAによる年周視差計測に基づく 銀河系外縁部HII領域IRAS 21306+5540の研究 <u>手塚大介¹, 中西裕之¹, 坂井伸行², 倉山智春³, 松尾光洋¹, 小出凪人¹</u> (1鹿児島大学,2国立天文台,3帝京科学大学)

概要

本研究ではVERAを用いてHII領域IRAS 21306+5540の水メーザー源を観測し、AIPSによるデータリダクションを行った。その結果、年周視差がπ=0.154±0.025 mas、距 離に換算してD=6.52_0 g1^{+1.27} kpcと求まり、固有運動が(μαcosδ,μδ)=(-2.68±0.05, -2.46±0.08) mas/yrと求められた。得られた距離から銀河系回転速度を導出し、 回転曲線を描いた。さらに内部運動と中心YSOの物理量を求め、CO(J=2-1)の観測結果と比較することで、星形成の要因として分子雲衝突の可能性が示唆された。

1. 研究の目的

VERAでは、メーザー源の年周視差計測に よって、未だ不定性の大きい銀河系外縁 部の回転曲線を詳細に求め、銀河系の動 力学を明らかにすることを目標として、 Outer Rotation Curve (ORC)プロジェクトを 進めている。 今回は、ORCターゲットの1つで あるIRAS21306+5540について調査した。

銀河系内縁部 < 🕂 > 銀河系外縁部

図1:これまでの観測結果で描いた回転

(年周視差計測)

15

3. 観測とデータ解析

観測はVERA(VLBI Exploration of Radio Astrometry)4局を用いて3年間に渡り13観 測行われた。観測周波数は22.235GHzで、参照電波源は離角1.61°に位置する J2123+55である。データ解析には、電波干渉計イメージングソフトAstronomical

2. IRAS 21306+5540

IRAS21306+5540は大質量星形成領域の1つで、アウターアームに付随すると考 えられている。北方のコンパクトHII領域であるS128N(図2ではIRS2付近)から水 メーザーが検出されている。

転速

50 |

(終端速度計測)

銀河中心からの距離 R kpc

曲線。Sofue+2009

S128N (水メーザー放射)

図2(左):近赤外線Ksバンドで得られたIRAS 21306+5540のイメージ。(右):J,H,Ksバンドの3色 合成イメージ。中心が(α , δ)= (21^h32^m10.4^s, +55°52'57")、144"×144"のイメージである。 Bohigas & Tapia 2001

	IRAS21306+5540	J2123+5500
別名	S2-128 (S128)	B2121+5447
	G097.53+3.18	
	A77	
赤経 α	$21^h 32^m 12.44^s$	$21^{h}23^{m}05.31^{s}$
赤緯 δ	$+55^{\circ}53'49.6"$	$+55^{\circ}00'27.33"$
銀経1	97°.53	95°.98
銀緯 b	$+3^{\circ}.18$	$+3^{\circ}.44$
ミ体の分類	大質量星形成領域	クエーサー?
離角	-	1.61°

表1:観測天体IRAS21306+5540と位相参照電 波源J2123+55のプロファイル

Image Processing System (AIPS)を用いてメーザースポットの相対位置と強度を求

4. 結果と考察

年周視差フィッティングにより、年周視差と固有運動が以下のように求まった。

Ohiaat	
Sun D U_0 U_0 V_{Rin} U_0 V_{Rin} U_0 V_{Rin} U V_{Rin} V_{Rin} U V_{Rin} V_{Rin} U V_{Rin} U V_{Rin} U V_{Rin} U V_{Rin}	 V - 銀河定数(R₀,V₀)=(8.05, 238) km/s - 視線速度V_{LSR}=-72.5 km/s - 太陽運動(U₀,V₀,W₀)=(10.0, 12.0, 7.2) km/s (Honma+2012,¹²CO, Haschik & Ho 1985) 図6:今回用いた座標系(U,V,W),(VR,V0,VZ)の定義。Wおよび Vz は北銀極方向を正にとる。R:銀河中心からの距離、z:銀ジ 面からの距離を示す。
Annual parallax Distance Proper motion	$\pi = 0.154 \pm 0.025 \text{ mas}$ D=6.52 _{-0.91} ^{+1.27} kpc ($\mu_{\alpha} \cos \delta$, μ_{δ})=(-2.68±0.05,-2.46±0.08) mas/yr

 $(V_{R}, V_{A}, V_{7}) = (5.07 \pm 25.03, 219.73 \pm 22.22, 2.80 \pm 0.77) \text{ km/s}$ $(R, z) = (11.00 \pm 0.41, 0.36 \pm 0.06) \text{ kpc}$

> VLBAによる年周視差計測では π =0.133±0.017 mas, ($\mu_{\alpha} \cos \delta$, μ_{δ}) =(-2.94±0.06, -2.48±0.14) mas/yrと算出(Hachisuka+2014)。

考察(1) 内部運動とYSOの物理量

 $(\Delta \alpha, \Delta \delta) = (0, 150)$ 付近を中心に放

-70

考察(2) 銀河系外緣部回転曲線

	IX. 2 X .	Deel.	Л	10	VΘ	1 1111	Kelefellee
	(hh mm ss)	(dd mm ss)	(mas)	(kpc)	$(\mathrm{km}\ \mathrm{s}^{-1})$		
21379 + 5106	$21\ 39\ 40.55$	$+51\ 20\ 34.00$	0.262 ± 0.031	9.22 ± 0.43	218.17 ± 19.00	Per	Nakanishi et al. 2015
05168 + 3634	$05\ 20\ 22.07$	$+36\ 37\ 56.63$	0.532 ± 0.053	9.91 ± 0.94	225.22 ± 34.28	Per	Sakai et al. 2012
21306 + 5540	$21\ 32\ 12.44$	$+55\ 53\ 49.60$	0.154 ± 0.025	11.00 ± 0.41	219.73 ± 22.22	Out	This work
07427 - 2400	$07\;44\;51.92$	$-24\ 07\ 41.46$	0.185 ± 0.027	11.71 ± 0.58	238.08 ± 22.95	Per	Sakai et al. 2015
01123 + 6430	$01\ 15\ 40.80$	$+64\ 46\ 40.80$	0.131 ± 0.015	13.94 ± 0.41	243.80 ± 25.90	Out	Koide et al. (in prep.)

考察(3)分子雲衝突

250

200

150

100

 $V_{ heta}$ [km

Kim+15のCO(J=2-1)観測結果と比較すると、Takahira+14の分子雲衝突のシミュ

レーション結果の円弧状/直線状の構造と似ていることがわかった。

これは同様のORC天体であるKoide+in prep.の結果とも同様であり、銀河系外縁 部における星形成の要因として相対速度5km/s程度の分子雲衝突が示唆された。

^{55 56 00} d) 21306+5540 **[-89.8**, -76.2] [-67.1, -50.2]

参考文献

Bohigas & Tapia 2001, Hachisuka et al. 2014, Haschik & Ho 1985, Ho et al. 1981, Honma et al. 2012, Kim et al. 2015, Panagia 1973, Sofue et al. 2009, Takahira et al. 2014, Wang et al. 2009

VERA ユーザーズミーティング,国立天文台三鷹,2016.10.3-4