Maser bow shocks and non-linear proper motions near massive young stars

Ross Burns

Joint Institute for VLBI ERIC (JIVE) the Netherlands

Motivations

- Parallax -> source distance
- Use proper motions to study jets
- Low- vs High-mass star formation

Targets: AFGL 5142 MM1 - and - S255IR-SMA1

- > 1000 Lo
- 6.7 GHz maser
- Centimeter emission
- 22 GHz water masers

QSOs < 50 mJy Inverse phase referencing

Observations: VERA

Observations: AFGL 5142 MM1

Epoch number	Observation date	Modified Julian date	Number of features
1	21 Apr 2014	56768	12
2	20 May 2014	56797	9
3	2 Oct 2014	56932	17
4	25 Nov 2014	56986	22
5	31 Jan 2015	57053	24
6	29 Mar 2015	57110	29
7	29 May 2015	57171	19

Observations: S255IR-SMA1

Epoch	Observation	
number	date	
1	23rd Nov 2008	
2	1st Feb 2009	
3	18th May 2009	
4	28th Aug 2009	
5	15th Sep 2009 \dagger	
6	27th Sep 2009 \dagger	
7	24th Oct 2009 \dagger	
8	13th Dec 2009	
9	28th Jan 2010 †	
10	10th Feb 2010	
11	4th Apr 2010	
12	11th Aug 2010	

Results: Parallax S255IR-SMA1

Offset (mas)

- $D = 1.78 \pm 0.12$
- Consistetn with VLBA:
 D_{VLBA} = 1.59 ± 0.07 kpc
- Actually VERA is more reliable in this case (more epochs, higher v)

Results: Parallax AFGL 5142 MM1

Leanid Alremay

S255IR-SMA1 Maser maps Proper motions

<u>Results</u>

S255IR-SMA1

- Masers symmetric around the star (cross)
 - Expanding motion
- Trace the bow shock
- Proper motions of 1-3 mas/yr 10-25 km/s

Results

S255IR-SMA1

U-shaped bow shock similar to S106
Bow shock ejected from the MYSO
Highly collimated
Some velocity dispersion at the tip (Signature of jet)

Results

S255IR-SMA1

U-shaped bow shock similar to S106 Bow shock ejected from the MYSO Highly collimated Some velocity dispersion at the tip (Signature of jet)

AFGL 5142 MM1

Maser maps Proper motions

Burns et al. 2016, in prep.

Burns et al. 2016, in prep.

Leanid Arema

<u>Results</u>

AFGL5142

 Bow shocks ejected from the MYSO
 Proper motions of 1-2 mas/yr
 10-20 km/s
 Some velocity
 dispersion at the tip

Combine with previous VLBI data

- EVN 6.7 GHz CH₃OH 2004 Goddi C., Moscadelli L., 2006, A&A, 447, 577
- VLBA 22 GHz H₂O 2004

Goddi C. et al., 2007, A&A, 461, 1027

VERA – 22 GHz H₂O 2014

Burns et al. 2016, in prep.

VLBI Proper motions <u>Vs</u> Outflow models

Model: Lee & Ostriker

Dispersion motion at the tip (in a bow shock)

Motions all interpolate back to source (momentum driven)

Model: Lee & Ostriker

Lee et al., 2001, ApJ, 557, 429

Leanid Arena

Leanid Alremo

Model vs Data

Transverse velocity profile $u_{R} = \frac{\beta c_{s} v_{s} R_{j}^{2} (R^{2} - R_{j}^{2})}{(\beta c_{s} R_{j}^{2})^{2} + v_{s}^{2} (R^{2} - R_{j}^{2})^{2}} v_{s} .$ Lee et al., 2001, ApJ, 557, 429

Conclusions #1

MYSO outflows driven by collimated jets w/ bowshock (Similar to low mass YSOs)

Small contribution from disk wind?

Bowshock physical parameters: Jet width: 5-10 AU Jet velocity \approx 50 km/s Momentum rate \approx

Non-linear proper motion H₂O maser

Leaniel Alremay

Leanid Alrema

Best fit: accelerating orbit I'm not sure how to interpret this, physically

Leanid Arema

Conclusions #2

AFGL 5142-MM1:

Unusual (non-linear) proper motion in one water maser feature near the MYSO.

Interpretation not yet conclusive. Further observations needed to explain it.

JIVE Joint Institute for VLBI ERIC

Thanks for listening

Im learning many VLBI skills at JIVE, and Netherlands = 山梨 (やま なし!)

Bonus slide (woooh!)

U-shaped (cubic)

- Density of jet-ambient gas
- Source/launching energetics
- Obs. test of models/theory

Orosz et al 2016

Û Û

Arc-shaped parabolid

