Tropospheric Delay and Loss correction by Water Vapor Radiometer

N. Kawaguchi
Visiting Professor of
Shanghai Astronomical Observatory
Thanks for our observations

VLBI observation of the M81 core with the CVN in X-band and the Pseudo-Closure Analysis

Noriyuki Kawaguchi,1,2,4 Wu Jiang,1,2,4 and Zhi-Qiang Shen1,2

1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
2 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Shanghai 200030, China
4 University of Chinese Academy of Sciences, Beijing 100049, China

CVN observation was published (2015.12)
KaVA data are being analyzed.

VLBI observations of a flared optical quasar CGRABS J0809+5341

Tao An1,2,4, Yu-Zhu Cui1,3, Zsolt Paragi1, Sándor Frey1, Leonid I. Gurvits1,6 and Kristina E. GABÁNYI1,2

1 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
2 School of Electrical and Electronic Engineering, Shanghai Institute of Technology, 201416, Shanghai, China
3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 210008 Nanjing, China
4 Joint Institute for VLBI ERIC, Postbus 2, 7990 AA Dwingeloo, the Netherlands
5 EDM Satellite Geodetic Observatory, P.O. Box 585, H-1522 Budapest, Hungary
6 Department of Astrodynamics and Space Missions, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, the Netherlands
7 Korkyza Observatory, MTA Research Centre for Astronomy and Earth Sciences, PO Box 67, H-1522 Budapest, Hungary

Published in the last week!
Wet delay correction Tools

<table>
<thead>
<tr>
<th>Method</th>
<th>Time Scale</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>300 seconds</td>
<td>Available all around the world (328 stations are registered.) Limited to the zenith direction Delay only</td>
</tr>
<tr>
<td>Ray Trace</td>
<td>3 hours</td>
<td>Available all around the world (241 stations are registered.) Omnidirectional Delay (and absorption)</td>
</tr>
<tr>
<td>Water Vapor Radiometer</td>
<td>10 seconds</td>
<td>No VLBI/WVR stations in Japan Omnidirectional Delay and Absorption Phase compensation</td>
</tr>
</tbody>
</table>
GPS EPL in Shanghai

A 70-mm change of excess path was observed on May 31, 2016.
Azimuth Dependence by Ray Trace

A 10-mm azimuth dependence was observed at 20-degree elevation.

North of Shanghai

May 31, 2016
Shanghai
(Shao1520
Archived by
Petrov)
Azimuth Dependence at El≈20deg

The 10mm change is disregarded in geodetic measurement by VLBI in which the zenith delay is corrected by GPS zenith delay.
Sub mm phase tracking by WVR

A WVR is possible to trace changes of excess path delay with an accuracy better than 1 mm.

Tahmoush and Rogers_2000
WVR in SHAO
GPS, Ray-trace and WVR delay

May 31, 2016

Tianma, Shanghai

Excess Path length (mm)

Time in CST (hour)

Cloudy

Rain
EPL measured on differential Tb

\[EPL(\text{mm}) = 7.94 \times \Delta T_b(K) \]
A new receiver on Tianma 65m

We can clearly see the water vapor resonance on a signal received by new receiver.

By Li Bing
Absorption Correction

• SecZ method is introduced to VERA
 – At a start and an end of an observation
 – Note on the difference between KVN and VERA.

• Tsys*
 – At every scans
 – A hot load is the reference.
Troubles in Hot Load Calibration?

KaVA open-use observation on M81 (Kawaguchi, Jiang and Shen)

Email from Jiang Wu at 10:43 on September 21, 2016
Tsys* calculation by WX data for ISG

Ishigaki Tsys data on 2015/080 in LOG and CALC

Shambayati model_2008
Is humidity of ISG OK?

2015056.WS.ISG (KaVA Open-Use for YuZhu Cui)
Concluding Remarks

• SHAO WVR works well only at a fine weather, no cloud and no rain.

• A water vapor spectrometer shall be an important radiometer in future.
 – Phase compensation (VERA/KVN/CVN compatibility)
 – Absorption correction (no secZ)

• Ground weather data is useful to recover troubles on hot load calibration.
 – VERA humidity data reliable?