

Results

OJ287 の 2015年アウトバースト時に おける電波強度変動

澤田-佐藤聡子¹, 新沼浩太郎², 永井洋³, 秦和弘³, 紀基樹⁴, 秋山和徳⁵, 小山翔子⁶ 1: 鹿児島大学, 2: 山口大学, 3: 国立天文台, 4:韓国天文研究院, 5: MIT Haystack Observatory, 6: MPIfR

- The target source OJ 287
 - \bigcirc BL Lac object at z=0.3. (1 milli arcsecond = 4.5pc)
 - It is known to show a rapid variability across a wide range of wavelength.
 - It exhibits double-peaked periodic optical outburst at a period of approximately 12 yrs.
 - A binary black hole model suggested^[1,2]

 - \bigcirc The first outburst is a thermal flare which is visible only in the optical regime.
 - About 1 yr later, the disturbance has propagated down the relativistic jet and results in the growth of new synchrotron-emitting shocks, which is visible both in optical and radio regimes.
 - The most resent flares occurred in December 2015^[3] and February 2016^[4]
 We here show the monthly VLBI monitoring observations from 2015 October to 2016 April.

Observations & data reduction

- VERA common use observations
 9 tracks from 2015 October to 2016 April
- Calibration, data flagging, fringe fitting and imaging were performed using the NRAO AIPS software.

Target source	OJ 287
Frequency band	K (22 GHz)
Array	VERA
Monitoring period	2015 Oct — 2016 April
Correlator	NAOJ correlator

- Our VLBI images show that the 22-GHz radio emission is dominated by the compact core component at all epochs.
- The 22-GHz radio emission seemed to increase slightly at the first optical outburst in Nov/Dec of 2015. After the second optical flare in Feb/Mar of 2016, the radio flux started to increase to almost twice.
- 1. Valtaoja et al. (2000), ApJ 531 744
- 2. Valtaoja et al. (2008) Nature 452 851
- 3. Shappee et al. (2015), The Astronomer's Telegram, 8372
- 4. Zola et al. (2016), The Astronomer's Telegram, 8667
- 5. Gupta et al.(2017), MNRAS 465 4423