# KaVA ESTEMA and the Large Program on circumstellar masers

Hiroshi Imai<sup>1</sup>, Se-Hyung Cho<sup>2</sup>, Yoshiharu Asaki<sup>3</sup>, Yoon-Kyong Choi<sup>2</sup>, Youngjoo Yun<sup>2</sup>, Naoko Matsumoto<sup>5</sup>, Cheul-Hong Min<sup>4</sup>, Tomoaki Oyama<sup>4</sup>, S.-C. Yoon<sup>5</sup>, D.-H. Kim<sup>5</sup>, Richard Dodson<sup>6</sup>, Maria J. Rioja<sup>6</sup>, Gabor Orosz<sup>1</sup>, Miyako Oyadomari<sup>1</sup>, Ross, A. Burns<sup>7</sup>, Bo Zhang<sup>8</sup>, Jaeheon Kim<sup>8</sup>, Akiharu Nakagawa<sup>1</sup>, James Chibueze O.<sup>9</sup>; Jun-ichi Nakashima<sup>10</sup>, Andrey M. Sobolev<sup>10</sup>; Lang Qui<sup>11</sup>; and Jiangbo Su<sup>12</sup> (KaVA ESTEMA team)

<sup>\*</sup>co-PI; <sup>1</sup>Kagoshima Univ.; <sup>2</sup>KASI KVN; <sup>3</sup>NAOJ Chile; <sup>4</sup>NAOJ Mizusawa; <sup>5</sup>Seoul National Univ.; <sup>6</sup>ICRAR/UWA; <sup>7</sup>JIVE; <sup>8</sup>SHAO; <sup>9</sup>Univ. Nigeria; <sup>10</sup>Ural Fed. Univ.; <sup>11</sup>XAO; <sup>12</sup>Yuncheng Univ.



Figure 1

Schematic view of the structure of a circumstellar envelope around an O-rich long-period pulsating star and hosting SiO and H<sub>2</sub>O masers. Gas ejected from the stellar surface forms molecules, then O-/Si-rich dust. The dust particles are transparent and accelerated by stellar radiative pressure received through scattering of stellar infrared radiation. The dust condensation, turbulence, and shock waves should be linked and explored in KaVA maser animation synthesis.



#### Figure 3

offset (mos)

First images of  $H_2O$  and SiO masers around Y Cas observed in KaVA ESTEMA. Righ-shaped morphologies of the SiO masers are visible even in limited integration time (~2 hours). The  $H_2O$  masers exhibit a highly biased distribution, but such distribution is typically seen in circumstellar  $H_2O$  masers even in high sensitivity imaging (Imai et al. in preparation).

## KaVA/EAVN Large Programs on circumstellar masers

#### Phase 1: KaVA ESTEMA (Extended Study on Stellar Masers) 2015 October — 2017 March

Snapshot imaging of  $H_2O$  and SiO masers in circumstellar envelopes (Figure 1), around 80 stars. Using multi-frequency phase-referencing, composite maps will be produced (Figure 2). Image synthesis is ongoing (Figure 3), but we can find at least 15 stars suitable for the phase 2 project (Figure 4).

#### Phase 2: new ESTEMA (EAVN Synthesis of Stellar Maser Animations) 2018—2027, ~450 hours/year

10 pulsating stars (P=306-1433 days) monitoring SiO and  $H_2O$  masers in every 1/20 pulsation cycle over a few pulsation cycles for "stellar maser animation" synthesis. The new ESTEMA sessions will adopt the scan patterns (Figure 5), similar to those in KaVA ESTEMA. The time allocation model for the monitoring observations are considerd (Figure 6) for realistic monitoring program for a decade. K-/Q-band simultaneous observations shall be conducted in the whole KaVA. Tianma, Nanshan, Sejong, and Nobeyama will be added dependent on available setup, season, and time allocation rule.

#### Figure 2

Composite map of H<sub>2</sub>O and SiO  $(J=2\rightarrow 1 \text{ and } 1\rightarrow 0)$ masers associated mas with the red supergiant offset S Persei, obtained in the KaVA (K/Q-bands)/ Decl. KVN (K/Q/W-band) commissioning observation (Asaki et al. in prep.).

16

J=2 27

15

H<sub>2</sub>O

9

42



### Figure 4

Venn diagram showing the overlap in occurrence of detections of maser emission in long-integration scalaraveraged spectra in KaVA ESTEMA.

#### Target maser and phase-reference/delay calibration sources in new ESTEMA

11

7

23

|                                         | Source name                             |                   |    |       | Coordinat  | es (J | 2000) |             | *Approx. flux     |            | Duration      | Source   | Epochs   | Span      | Duration | Total  |
|-----------------------------------------|-----------------------------------------|-------------------|----|-------|------------|-------|-------|-------------|-------------------|------------|---------------|----------|----------|-----------|----------|--------|
|                                         | (order of prior                         | it reference      | RA | . (hh | mm:ss.sss) | Decl. | (±d   | d:mm:ss.ss) | density (Jy/b)    |            | in total (hr) | category | per year | per epoch | (year)   | epochs |
| arget maser sources (order of priority) |                                         |                   |    |       |            |       |       |             | P (days)          |            |               |          |          |           |          |        |
| 1                                       | omicron Cet                             | symbiotic star    | 02 | 19    | 20.7921    | -02   | 58    | 39.496      | 4.7(K) / 1303 (Q) | 333        | 300           | A1       | 20       | 5         | 3        | 6      |
| 2                                       | RS Vir                                  | Mira              | 14 | 27    | 16.3900    | 04    | 40    | 41.143      | 39.1(K) / 12.4(Q) | 353        | 300           | A2       | 20       | 5         | 3        | 6      |
| 3                                       | BX Cam                                  | Mira              | 05 | 46    | 44.2900    | 69    | 58    | 24.200      | 78.4(K) / 77.1(Q) | 486        | 260           | B1       | 13       | 4         | 5        | 65     |
| 4                                       | HU Pup                                  | semiregular       | 07 | 55    | 40.1843    | -28   | 38    | 54.689      | 10.2(K) / 15.2(Q) | 820        | 335           | C1       | 10       | 5         | 6.7      | 6      |
| 5                                       | V438 Sct                                | OH/IR             | 18 | 41    | 14.3300    | -06   | 15    | 0.700       | 14.2(K) / 7.6(Q)  | 1181       | 407.4         | D1       | 7        | 6         | 9.7      | 6      |
| 6                                       | NML Cyg                                 | red supergiant    | 20 | 46    | 25.5444    | 40    | 6     | 59.383      | 45 (K) /3.4(Q)    | ~1000      | 325           | D2       | 7        | 5         | 9        | 63     |
| 7                                       | RT Vir                                  | semiregular       | 13 | 02    | 37.9814    | 05    | 11    | 8.383       | 96.9(K) / 8.9(Q)  | 306        | 300           | A3       | 20       | 5         | 3        | 60     |
| 8                                       | RX Boo                                  | semiregular       | 14 | 24    | 11.6266    | 25    | 42    | 13.409      | 20.5(K) / 10.8(Q) | 372        | 300           | A4       | 20       | 5         | 3        | 60     |
| 9                                       | Y Cas                                   | Mira              | 00 | 03    | 21.4700    | 55    | 40    | 51.800      | 3.9(K) / 17.2(Q)  | 414        | 260           | B2       | 13       | 4         | 5        | 6      |
| 10                                      | IW Hya                                  | Mira or OH/IR     | 09 | 45    | 15.2400    | -22   | 01    | 45.300      | 7.9(K) / 40.8(Q)  | 650        | 310           | C2       | 10       | 5         | 6.2      | 62     |
| )eli                                    | elay calibrator/phase-reference sources |                   |    |       |            |       |       |             | (Jy/beam)         | Sep. (deg) |               |          |          |           |          |        |
| 1                                       | J0215-0222                              | VLBA Cal.         | 2  | 15    | 42.017291  | -2    | 22    | 56.75238    | 0.14 at K band    | 1.08       | 108           | Ref. A1  | 20       | 1.8       | 3        | 60     |
| 2                                       | J1422+0414                              | Oyama in prep.    | 14 | 22    | 42.490502  | - 4   | 14    | 39.12077    | 0.041 at Q-band   | 1.22       | 108           | Ref. A2  | 20       | 1.8       | 3        | 6      |
| 3                                       | J0524+7034                              | Oyama in prep.    | 5  | 24    | 13.433416  | 70    | 34    | 52.90621    | 0.16 at Q-band    | 1.99       | 97.5          | Ref. B1  | 13       | 1.5       | 5        | 65     |
| 4                                       | J0747-2919                              | Oyama in prep.    | 7  | 47    | 41.889632  | -29   | 19    | 2.06148     | 0.09 at Q-band    | 1.87       | 120.6         | Ref. C1  | 10       | 1.8       | 6.7      | 6      |
| 5                                       | J1846-0651                              | Oyama in prep.    | 18 | 46    | 6.300263   | -6    | 51    | 27.74616    | 0.05 at Q-band    | 1.35       | 154           | Ref. D1  | 7        | 2.2       | 10       | 70     |
| 6                                       | J2046+4106                              | Zhang et al. 2012 | 20 | 46    | 21.8414    | 41    | 6     | 1.107       | 0.017 at Q-band   | 1.00       | 113.4         | Ref. D2  | 7        | 1.8       | 9        | 6      |
| 7                                       | J1308+0401                              | Oyama in prep.    | 13 | 8     | 15.553075  | 4     | 1     | 9.35157     | 0.026 at K band   | 1.82       | 108           | Ref. A3  | 20       | 1.8       | 3        | 60     |
| 8                                       | J1419+2706                              | VERA              | 14 | 19    | 59.297073  | 27    | 6     | 25.55274    | 0.42 at K band    | 1.69       | 108           | Ref. A4  | 20       | 1.8       | 3        | 6      |
| 9                                       | J2353+5518                              | rfc_2017b         | 23 | 53    | 42.299696  | 55    | 18    | 40.66649    | 0.24 at X band    | 1.42       | 97.5          | Ref. B2  | 13       | 1.5       | 5        | 6      |
| 10                                      | J0921-2618                              | VLBA Cal.         | 9  | 21    | 29.353855  | -26   | 18    | 43.38616    | 1.22 at X band    | 6.91       | 111.6         | Ref. C2  | 10       | 1.8       | 6.2      | 62     |

#### First day (with K-/Q-bands quasi-optics in VERA single-beam for SFPR) First hour Second hour



**Figure 5** Scan patterns that will be adopted in the new ESTEMA sessions. Each session in one day suppose a block of 3—9 hours for 1—3 maser sources.



Figure 6 Model of session allocations for new ESTEMA.

