

VERA-UM 2017 @ Miz, 11. 3~4, 2017

KJCC correlation status Development status for wideband Future works

Korea-Japan Correlation Center(KJCC)

Daejeon Correlator

DiFX Correlator on HPC

Correlation Status (2016B, Nov~2017A)

KVN only (216) by DiFX					
TypeObs time (Hours)HDD (TB)					
1Gbps	1,817.5	2,730.3			
2~8Gbps	391.2	3,803.3			
Total 2,208.7 6,533.6					

KaVA (86) by Daejeon Corr.				
Туре	Obs time (Hours) HDD (TB)			
KaVA	570.9	2027.2		
KVN (@KaVA)	111.8	237.5		
Total 682.7 2,264.7				

EAVN (16) by Daejeon Corr.				
Туре	Obs time (Hours)	HDD (TB)		
EAVN	119.2	494.1		
Total	119.2	494.1		

- FITS delivery for KVN only is currently delivered to PI within 2-weeks.
- In case of KaVA/EAVN, FITS file is distributed to PI within 1.5 month after arriving the media at KJCC, which depends on the diskpack delivery or data copy, transmission.
- In 2017A, average FITS deliver period
 - AGN : 25days (mostly)
 - ES : 22days
 - SFR : 58days (wide field)

EAVN(a17107a) EHT campaig > EATING VLBI (Italy)

Plot file version 22 created 07-SEP-2017 15:31:46 3C273 A17107A.MSORT.1 Freq = 22.0990 GHz, Bw = 32.000 MH Calibrated with CL # 3 but no bandpass applied

Vector averaged cross-power spectrum Several baselines displayed Timerange: 00/17:43:01 to 00/17:47:59

Correlation Mode

Corr. mode	Band width [MHz]	Output streams	#bits	Output data rate [Mbps]	Clock rate [MHz]
^a C1	256	1	2	1024	32
C2	128	2	2	1024	32
C3	64	4	2	1024	32
C4	32	8	2	1024	32
C5	16	16	2	1024	32
^b W1	512 x 4band	4	2	8192	64
W2	512 x 4band	1IF ^c x2P ^d 2IFx1P	2	8192	64
W3	512 x 4band	2IFx2P	2	8192	64

a, Narrow band, b. Wideband, c. IF, d. Polarization

Support wideband of 8Gbps

SGbps concept(Total 2048MHz BW)

512 MHz	512 MHz	512 MHz	512 MHz
BW	BW	BW	BW
			[

2 Gbps 2 Gbps 2 Gbps 2 Gbps 2 Gbps ◆ Obs Combination(w/ polarization)

4 bands (4Fx1P, 2Fx2P,1Fx2P+2Fx1P)

Array	Concept			
KVN	22L/R	43L/R	86L/R	129L/R
KaVA	22L	22R	43L	43R
	22L	22R	86L	86R
	43L	43R	86L	86R
KVIN/INKO45/CVIN	22L	22R	43L	86L
	22L	43L	86L	86R

KaVA 8Gbps correlation

✤ Max. 8Gbps/7 or 8 stations

- If 8Gbps will be correlated by Daejeon correlator for 7 or 8stations, 3 or 4 RVDBs should be needed.
- If we support 8Gbps correlation for KaVA in future, the following items should be considered.
 - More RVDBs are needed
 - VSI to VDIF change for VCS antenna unit
 - Or slow correlation by ½ speed, ¼ speed, which means that data is divided for each channel(not full 2048MHz BW, using only each 512MHz BW(2Gbps or 4Gbps etc)

VCS upgrade Advantage/Disadvantage

	Advantage	Disadvantage
Change VSI to VDIF on VCS	 Recent VDIF standard adopting Maybe over 8Gbps corr possible by modifying FPGA 	 High cost Change the main board step by step, half change then remained half change
Buying RVDB2(OCTAVIA2, OCTADISK2)	 Low cost No change, just continuously and stable operating possible 	 VSI port remained Over 8Gbps corr will be difficult

Data conversion SW development

#	SW	Function
1	Mark5BtoVDIF	Convert Mark5B format to VDIF format
2	VDIFtoMark5B	Convert VDIF format to Mark5B format
3	VDIFtoVDIF	Convert General VDIF format to OCTA- VDIF format
4	Cut_Mark5B	Extract Data from Mark5B format file
5	Cut_VDIF	Extract Data from VDIF format file

CODA/FITS development

Multi-frequency Multi-polarization (wideband mode, ex: 8Gbps)

- CODA is currently possible to support
- If selection rule of frequency part will be adopted, CODA/FITS for each IF will be generated
- Dual-polarization mode support
 - CODAgen SW development was completed.
 - Test obs data was used (s17so01a(k17046a), C2~C5 mode)

C3(64MHzBW x 4ch) mode(LLRR)

KVN Halcyon recorder (Specification)

- Target processor : Intel Xeon
- □ Target board
- Asrock X99 extreme11
- DDR4 RAM 32GBytes
- Broadcom BCM57711 NIC 10GbE PCIe
- Operating System : FirmOS(like DOS)
 - include scheduler
 - support multi-core
 - <u>no filesystem</u>
 - <u>DRAM/NIC/SATA control directly</u> (without device driver)
- Build environment: gcc, nasm(boot code)
 - <u>can make full resources and performance</u>
 - recording speed <u>8.224Gbps</u>(VDIF UDP)
 - recordable capacity <u>90%</u> of SATA HDD
- very cheap(Mainboard/CPU/RAM/NIC/Chassis)
 - around \$5,000 without HDDs

KYS-KTN baseline

1Gbps SNR (MK5)

8Gbps SNR (Halcyon + MK6)

※ SNR comparison: 1Gbps(64 MHz BW/4IF) and 8Gbps(512MHz BW/4IF) Expected value of theoretical sensitivity increment (about 3 times) is well followed according to the bandwidth increase (8 times). The results of Halcyon are almost same as those of KYS Mark6

HDD checking system

- HDD with huge capacity is used to record high rates of obs data.
- In recording at Obs., the data was correctly recorded, but the diskpack was not recognized at Correlator center during playingback
- In order to overcome this issue, HDD checking system was developed using FirmOS same as OS of KVN Halcyon recorder.

2017.08 : installed at KVN 3 stations

Preliminary Test item

	Mode name	Obs mode structure	Recording speed
		2048 MHz BW x 1ch	8 Gbps
Wideband		1024 MHz BW x 1ch	4 Gbps
	W1	512 MHz BW x 1ch	2 Gbps
Narrowband	C1	256 MHz BW x 1ch	1 Gbps
	C2	128 MHz BW x 2ch	1 Gbps
	C3	64 MHz BW x 4ch	1 Gbps
	C4	32 MHz BW x 8ch	1 Gbps

OCTAD preliminary result [Q-band @ KYS] m5spec_test m5spec_test m5spec_test 00 10⁰ 10⁰ 1024MHz BW 2048MHz BW 10-1 200 400 800 1000 200 400 600 800 1000 0 600 0 100 0 200 500 Frequency (MHz) Frequency (MHz) Frequency (MHz) m5spec test m5spec_test m5spec_test 10⁰ 10⁰ 10⁰ 64MHzBW x 4ch m5spec test 02 03 256MHz BW 128MHzBW x 2ch 10⁰ 50 100 50 100 150 200 250 50 200 250 0 100 150 Frequency Frequency (MHz) Frequency (MHz) 32MHzBW x 8ch K

50

100

150

Frequency (MHz)

200

250

Future works

Data format alignment

- VERA : VDIF(octa)
- KVN : VSI, VDIF(general)
- KJCC : current all support → general VDIF

Direct FITSgen SW

- Reduce FITS generation time
 - No CODA FS exist, which is just for request base
 - The SW development will be conducted with Leonid from next month

Support binning-factor for CODA/FITSgen

- Reduce FITS file size for spectral-line
- SW Digital Filter Development
 - Support EAVN, and Speed up
 - GPU server will be introduced

Near Future : Data Transmission

Data transmission from each Obs.

- 4set STARDOM(RAIDBOX) server were prepared
- 2set STARDOM server will be introduced next year.
 - 3 set for KVN, 2 set for VERA/EAVN, 1set for test
- Mark5B/Mark6 data for KaVA will be transferred mid of next

year

