VLBI observations of circumstellar masers with JVN/KaVA/EAVN

Hiroshi Imai (Center for General Education / Amanogawa Galaxy Astronomy Research Center, Kagoshima University) On behalf of: KaVA ESTEMA (Expanded Study on Stellar Masers) Team

new ESTEMA (EAVN Synthesis of Stellar Maser Animations) Team

the Team of the JVN Large Project on Circumstellar H₂O Masers^{**} ^{**}Hiroshi Imai, Miyako Oyadomari, Yoshiharu Asaki, Yoshinori Yonekura, Kenta Fujisawa, Naoko Matsumoto, HIroshi Takaba, Makoto Nagai, Mamoru Sekido (VLBI Univerity Alliance)

KaVA ESTEMA (Expanded Study on Stellar Masers)

During 2015 October —2017 March, for ~280 hours, towards 80 stars Snapshot imaging of detected H₂O and SiO masers in circumstellar envelopes around ~40 stars. Using multifrequency phase-referencing, composite maps will be produced. Automated image scube ynthesis is ongoing.

New ESTEMA (EAVN Synthesis of Stellar Maser Animations)

During 2018 May—2027, for 200—300 hours/year, towards 6 stars with pulsation periods P=300-1000 days (Table 1) Intensive monitoring of SiO and H₂O masers in every 1/20 pulsation cycle over a few pulsation cycles Producing and archiving stellar maser animation in the database

(eDAMS, Nakashima et al. 2018)

Still snapshot imaging (~3 hours), but image quality will be secured by at least five KaVA/EAVN telescopes (Figure 2)

 Table 1
 Target maser and phase-reference/delay calibation sources in new ESTEMA. In 2018, BX Cam and NML Cyg have been focused.

		Source name	Coordinates (J2000)						*Approx. flux		Source	
		(order of priori reference			R.A.			Dec	sl.	density (Jy/b)		category
	Tar	arget maser sources (order of priority									Period (d)	
	1	omicron Cet	symbiotic star	02	19	20.7921	-02	58	39.496	5 (K) / 1303 (Q)	333	A1
	2	U Her	Mira	16	25	47.4520	18	53	32.660	27 (K) / 9 (Q)	406	A2
	3	BX Cam	Mira	05	46	44.2900	69	58	24.200	78 (K) / 77 (Q)	486	B1
	7	Y Cas	Mira	00	03	21.4700	55	40	51.800	3.9(K) / 17.2(Q)	414	B2
	9	IW Hya	Mira or OH/IR	09	45	15.2400	-22	01	45.300	8 (K) / 41 (Q)	650	C2
	10	NML Cyg	red supergiant	20	46	25.5444	40	6	59.383	45 (K) /3 (Q)	~1000	D2
	Delay calibrator/phase-reference sources (Jy/beam)								(Jy/beam)	Sep. (deg)		
	1	J0215-0222	VLBA Cal.	2	15	42.0173	-2	22	56.752	0.14 at K band	1.08	Ref. A1
	2	J1620+1736	VCS	16	20	21.8186	17	36	23.951	0.07 at K band	1.82	Ref. A2
	3	J0524+7034	Oyama in prep.	5	24	13.4334	70	34	52.906	0.16 at Q-band	1.99	Ref. B1
	7	J2353+5518	rfc_2017b	23	53	42.2997	55	18	40.666	0.24 at X band	1.42	Ref. B2
	9	J0921-2618	VLBA Cal.	9	21	29.3539	-26	18	43.386	1.22 at X band	6.91	Ref. C2
	10	J2046+4106	Zhang et al. 2012	20	46	21.8414	41	6	1.107	0.017 at Q-band	1.00	Ref. D2

Figure 1 Allocation model of the ESTEMA observation session. In 2018 – 2019, each session is composed of a pair of K-/Q-band blocks (~3 hours) for VERA. Later, each session shall adopt K-/Q-band simultaneous observations with full KaVA and EAVN telescope. Each star shall be monitored in 2 – 3 stellar pulsation cycles (700 – 1500 days).

JVN Large Projecrt on Circumstellar Masers (VERA 15B-111)

2016 May, for ~50 hours, towards 20 stars Snapshot imaging of H_2O masers For statistics of maser spot/feature shapes expected to have possible correlation with stellar type and the evolution of circumstellar envelope, which is under investigation (Figure 3)

Figure 2 KaVA imaging of SiO $J=1\rightarrow 0$ masers around BX Cam, which was conducted in 2018 May. The registration of the two maser map should be made more reliably on the basis of astrometry.

