Summary of KaVA/EAVN AGN SWG activities

M. Kino (NAOJ/Kogakuin Univ) & BW Sohn (KASI) on behalf of EAVN AGN SWG

VERA Users Meeting 2018, at Mitaka

Science driver

- What happens in the vicinity of black holes (BHs)?
- M87 and Sgr A* are the best two targets for looking into the vicinity of Black holes!
- KaVA-EAVN AGN SWG has focused on M87 and Sgr A* since 2013~.

Tight collaboration with EHT-C via M87 and Sg r A*

Members of the EHT team at Telescopes

Event Horizon Telescope

VERA UM 2018

Publications using KaVA AGN LP (1st phase) data

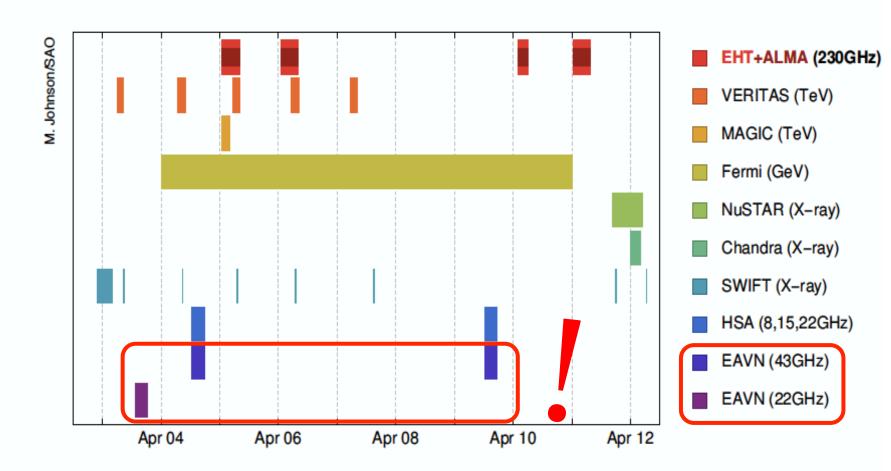
- 1. Performance evaluation of KaVA array with bright AGNs (2011 data) (Niinuma et al. 2014, PASJ).
- 2. Early result of KaVA pilot monitoring (during 2013-2014) at 22 GHz confirmed superluminal motions at sub-pc scale (Hada et al. 2017, PASJ).
- 3. Kinematics of 4C21.35 (during 2013-2014) (Lee T et al. 2018, MNRAS).
- 4. Scattering kernel of Sgr A* (one epoch in 2014) (Johnson et al. 2018, ApJ)
- 5. Detailed profile of the velocity field of M87 based on KaVA AGN LP (2015-2016 (Park et al. *in prep*).
- 6. The radial profile of the spectral index map of M87 between 22 and 43 GHz with KaVA AGN LP data (2015-2016) is investigated (Ro et al. *in prep*).
- 7. Performance evaluation of EAVN (KaVA+Tia) w/ M87 data (Cui, Hada et al. *in prep*).
- 8. M87 kinematics during 2017 EAVN-EHT campaign data (Cui, Hada et al. *in prep*).
- 9. Performance evaluation of EAVN (KaVA+Tia) w/ Sgr A* data (Zhao et al. *in prep*).
- 10. Sgr A* long term monitoring (2013-2015) (Zhao et al. *in prep*)
- 11. etc

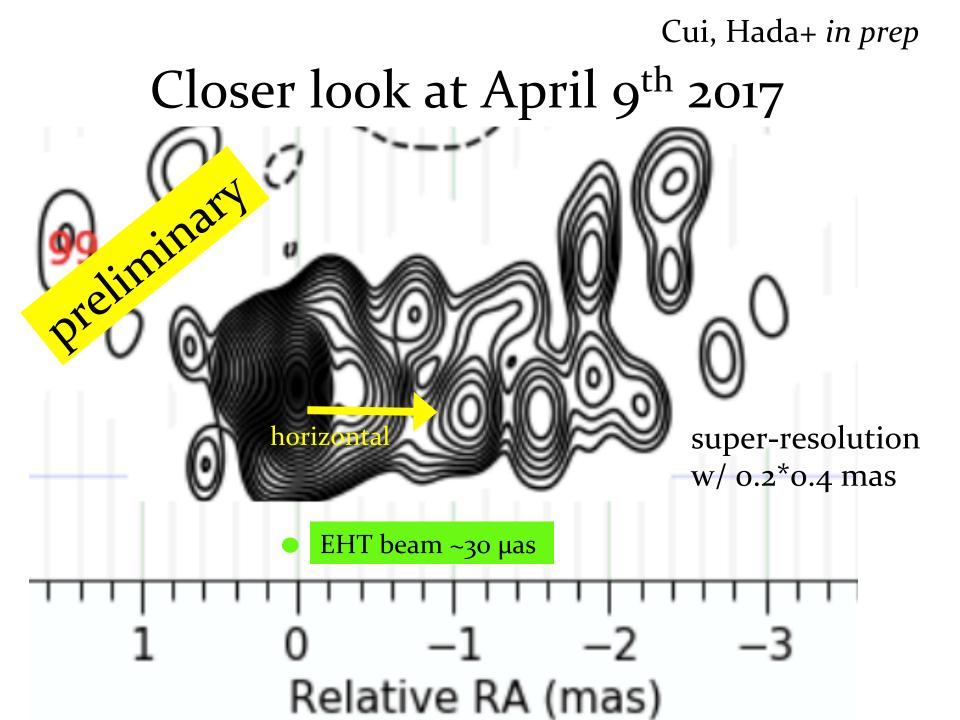
VERA UM 2018

News on 2017 EAVN-EHT campaign M87 (1 mas = 140 Rs) is the best source for this study.

Event Horizon Telescope in 2017

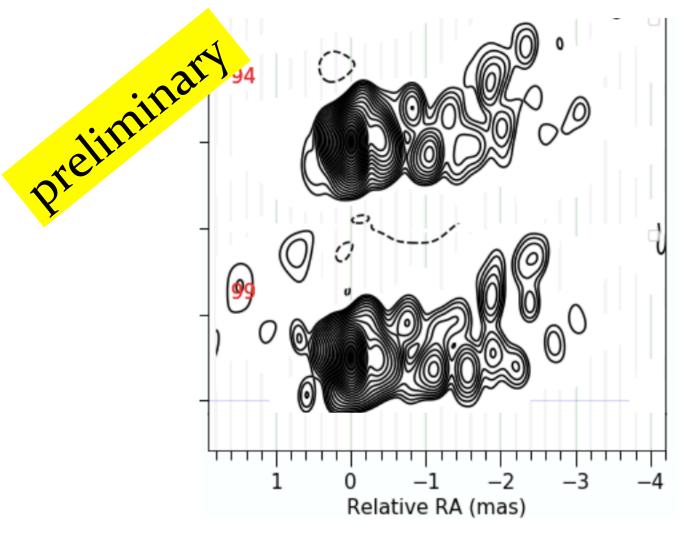
- Atacama Large Millimeter Array (ALMA), Chile
- ALMA Pathfinder Experiment (APEX), Chile
- James Clerk Maxwell Telescope (JCMT), Hawaii
- Large Millimeter Telescope (LMT), Mexico
- IRAM 30-meter Telescope, Spain
- South Pole Telescope (SPT), South Pole
- Submillimeter Array (SMA), Hawaii
- · Submillimeter Telescope (SMT), Arizona




Event Horizon Telescope

VERA UM 2018

Multi-Wavelength Coverage: M87 in April 2017

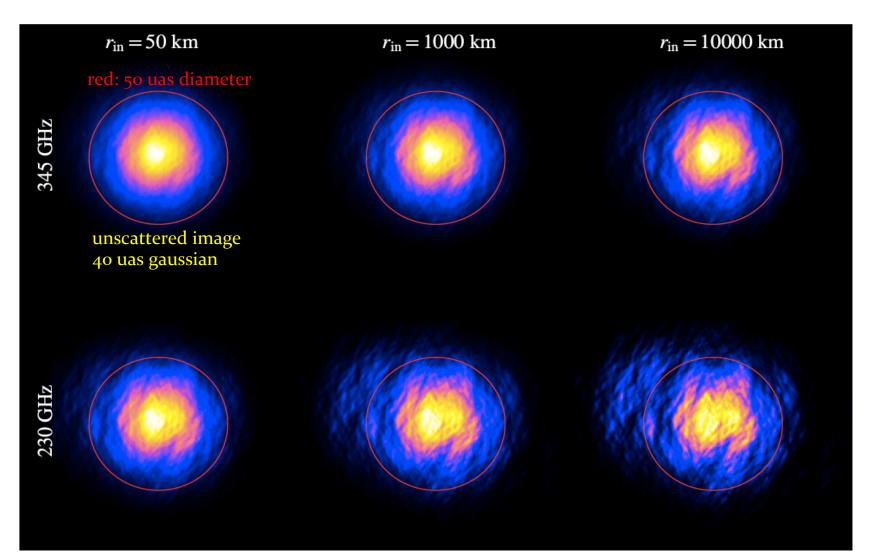


Shortest interval (Apr 5th and 9th 2017)

Cui, Hada+ in prep

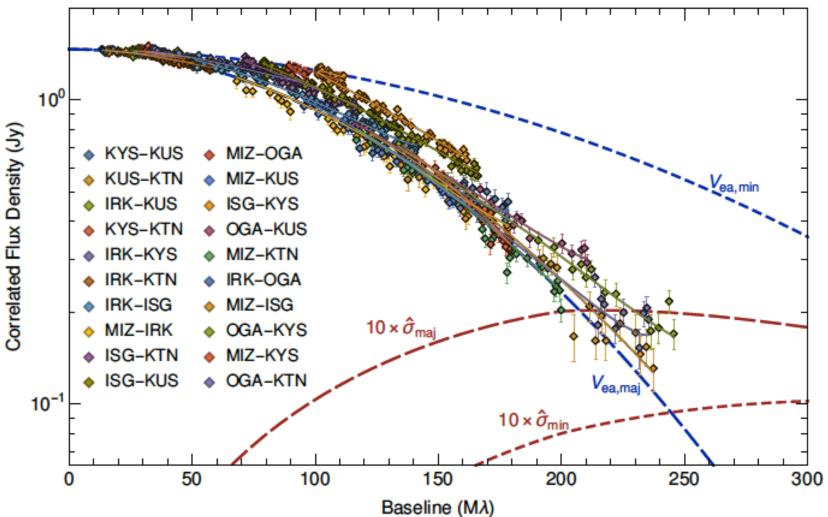
Don't miss the next talk by Y. Cui san!

VERA UM 2018

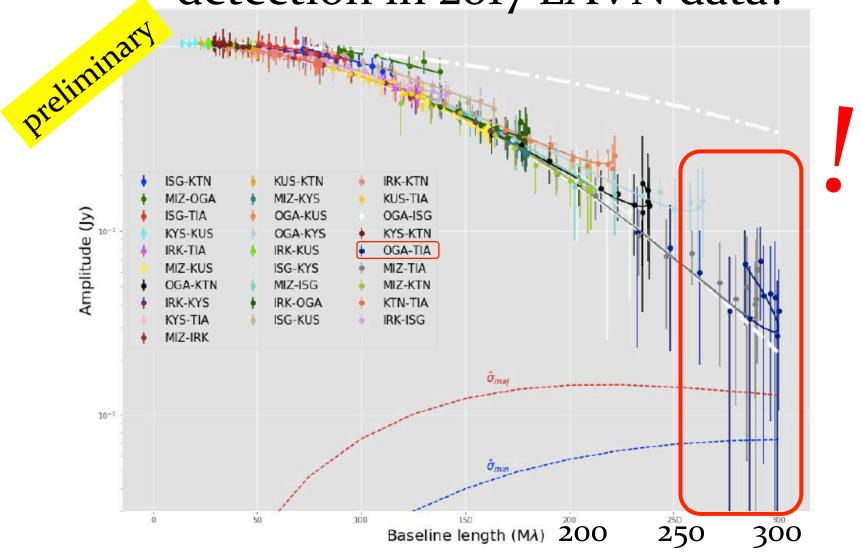

Persuade of non-Gaussianity in Sgr A* Sgr A*(1 mas = 100 Rs) is the unique source for this study.

Long standing problem:

"Observed radio images of Sgr A* is dominated by interstellar scattering. So, an inference of Sgr A* image is sensitive to an assumed scattering model."


Psaltis, Johnson+ 2018

Progress: a physically motivated model of interstellar scattering


Johnson+ 2018

KaVA 7mm data (2014 Nov) significantly contributes to constrain scattering kernel.

Zhao+ *in prep*

Longest baseline (OGA-TIA 300Mλ) detection in 2017 EAVN data!

VERA UM 2018

Further upgrade of EAVN EAVN-high @ 3.5 mm

EAVN white paper

White Paper on East Asian Vision for mm/submm VLBI:

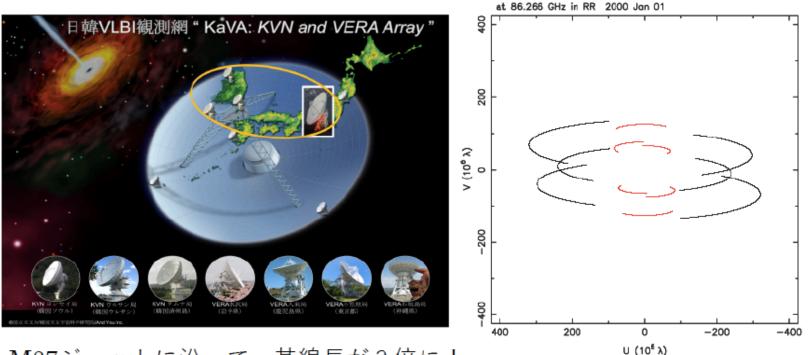
Toward Black Hole Astrophysics down to Angular Resolution of 1 R_S

Editors

Asada, K.¹, Kino, M.^{2,3}, Honma, M.³, Hirota, T.³, Lu, R.-S.^{4,5}, Inoue, M.¹, Sohn, B.-W.^{2,6}, Shen, Z.-Q.⁴, and Ho, P. T. P.^{1,7}

Authors

Akiyama, K.^{3,8}, Algaba, J-C.², An, T.⁴, Bower, G.¹, Byun, D-Y.², Dodson, R.⁹, Doi, A.¹⁰, Edwards, P.G.¹¹, Fujisawa, K.¹², Gu, M-F.⁴, Hada, K.³, Hagiwara, Y.¹³, Jaroenjittichai, P.¹⁵, Jung, T.^{2,6}, Kawashima, T.³, Koyama, S.^{1,5}, Lee, S-S.², Matsushita, S.¹, Nagai, H.³, Nakamura, M.¹, Niinuma, K.¹², Phillips, C.¹¹, Park, J-H.¹⁵, Pu, H-Y.¹, Ro, H-W.^{2,6}, Stevens, J.¹¹, Trippe, S.¹⁵, Wajima, K.², Zhao, G-Y.²

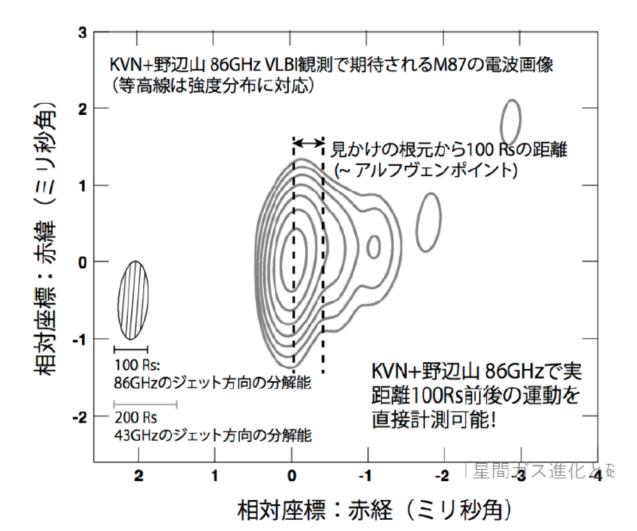

arXiv:1705.04776v1 [astro-ph.HE] 13 May 2017

What's next?

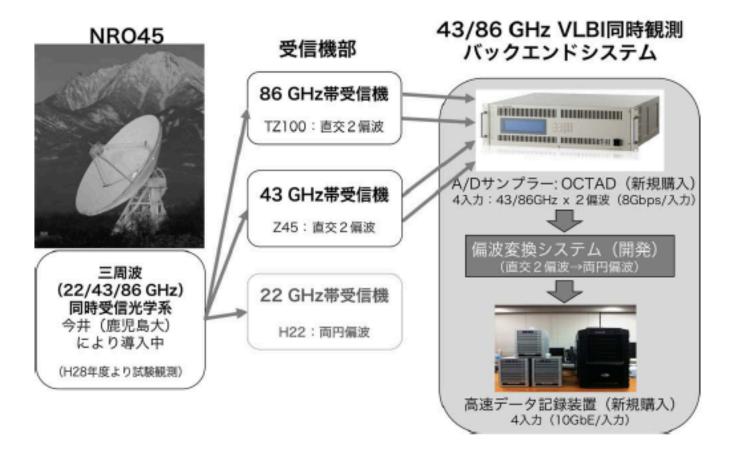
86GHz!

Which array?

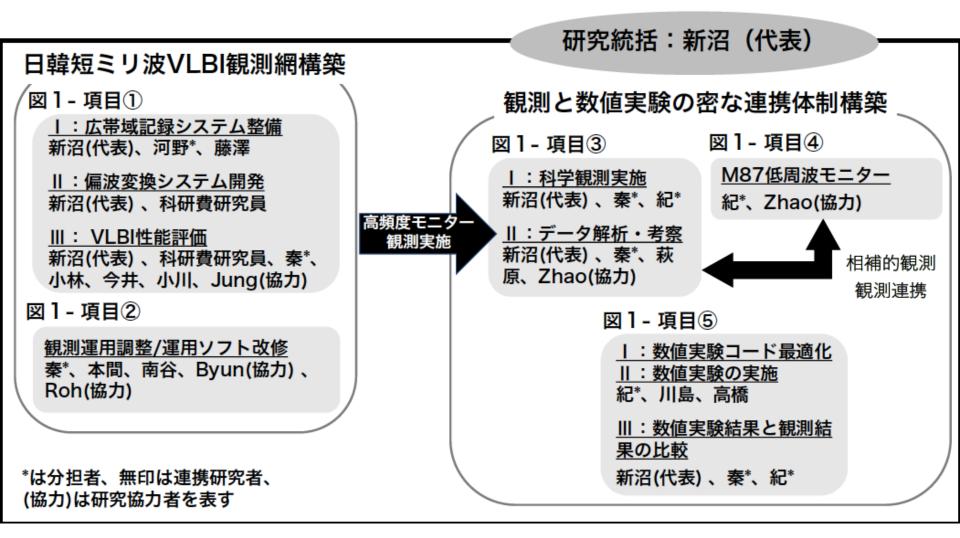
KVN + NRO45@86 GHz



M87ジェットに沿って、基線長が3倍に!


Why KVN+NRO45? Cadence!

世界のミリ波 VLBIアレイ (> 86GHz)	空間分解能 (1)	撮像感度 (2)	モニター頻度 (3)
Event Horizon Telescope (230GHz)	© ~6Rs	×	× (年数回のみ)
Global mm-VLBI	©	©	×
Array (86GHz)	~14Rs	>10σ	(年数回のみ)
KVN+NRO45	©	©	〇
(86GHz:本研究)	88Rs	~10σ	(2週間に1回)


VLBA+GBT 86 GHz image (Hada+16) restored w/ KVN-NRO45 beam

Upgrade of NRO45m: VLBI backend system (PI: Niinuma-san) & Quasi-Optics (PI Imai-san)

Don't miss the relevant talk by Okada-san!

ご支援のほどどうぞよろしくお願い申し上げます

Summary of EAVN AGN SWG activities

- Wrapping up papers w/ 1st phase KaVA LP data 2016-2017
 - ✓ both EAVN performance-evaluation of and KaVA LP science

Development/Upgrade of EAVN

 https://radio.kasi.re.kr/eavn/main_eavn.php

 EAVN-high, NRO45

Timeline for W-band VLBI at NRO

For W-band		2018			Τ	2019				2020				20)21				
		Remarks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
Optics	KQ/W dichroic plate	Developed	(Single	Dish)		(5	Single Disl	h)											Development
Receiver	TZ receiver	Linear Pol. (H/V)	Repairi	ing SIS	3-Mixer	(5	Single Disl	h)	(Single [Dish)									Installation/Test
Sampler	OCTAD-V1	8Gsps x 3IFs							EAVN 20	019B ~									Commissioning
	OCTAD-V2	16Gsps x 3IFs	í			Procu	irement					EAVN 2	2020B /	-					Open for Common Use
Recorder	OCTADISK2	32 Gbps =4 x 8Gbps				Procu	irement				EAVN	2020A ~							
VLBI	W-band only								test wit (+GL		KaVA	2020A ~							
	K/Q/W band simultaneous								test wit (+G	:h KaVA LT?)	KaVA	2020A (?) ~						