VLBIとGaiaによる長周期変光星の年周視差の比較

中川亜紀治,濱田翔太(鹿児島大学),須藤広志(岐阜大学),倉山智春(帝京科学大学),国立天文台VERAプロジェクト

- 1. VLBIによる位置天文の結果、周期光度関係
- 2. VLBIとGaiaのParallaxを比較
- 3. Gaiaデータを用いた周期光度関係

長周期変光星(LPV)

https://www.cfa.harvard.edu/~mmarengo/me/agb.html

- •Mass $1 \sim 8 M_{\odot}$ (Mira: $1 \sim 2.5 M_{\odot}$?)
- •C/O-core, He-shell, H-rich envelope \rightarrow O-rich/C-rich
- •Period 100~1000 d, P>1000 d
- •AGB phase, Mass loss \rightarrow Chemical enrichment of universe
- •H2O, SiO, OH maser \rightarrow VLBI target
- Period luminosity relation \rightarrow Distance indicator

	Source	Туре	$\Pi_{\rm VLBI}$	Π_{Gaia}	P	$\mathrm{Log}P$	m_K	M_K	Maser	Ref. [†]
			[mas]	[mas]	[day]		[mag]	[mag]		(Π_{VLBI}, m_K)
	SY Scl	Mira	$0.75 {\pm} 0.03$	$0.68 {\pm} 0.23$	411	2.614	2.55	-8.07 ± 0.09	H_2O	nyu11,b
	WX Psc	OH/IR	5.3 ^b		660	2.820	2.22	-4.16	OH	oro17,a
	S Per	SRc	$0.413 {\pm} 0.017$	0.22 ± 0.12	822	2.915	1.33	-10.59 ± 0.09	H_2O	asa10,b
	OH138.0+7.2	OH/IR	$0.52 {\pm} 0.09$		1410	3.149	8.548	-2.87 ± 0.38	OH	oro17,a
	T Lep	Mira	$3.06 {\pm} 0.04$	2.96 ± 0.19	368	2.566	0.12	-7.45 ± 0.03	H_2O	nak14,c
_	RW Lep	SRa	1.62 ± 0.16	$2.35 {\pm} 0.13$	150	2.176	0.639	-8.31 ± 0.22	H_2O	kam14,a
Т	U Lyn	Mira	1.27 ± 0.06	$0.58 {\pm} 0.22$	434	2.637	1.533	-7.95 ± 0.10	H_2O	kam16a,a
J	VY CMa	SRc	$0.88 {\pm} 0.08$	$-5.92{\pm}0.83$	956	2.980	-0.72	-11.00 ± 0.20	H_2O	cho08,b
	OZ Gem	Mira	$1.00 {\pm} 0.18$	$-0.96 {\pm} 0.46$	598	2.777	3.00	-7.00 ± 0.40	H_2O	iaus336,a
	OH231.8+4.2	OH/IR	$0.55 {\pm} 0.05$	$0.10 {\pm} 0.18$	548	2.739	6.546	-4.53 ± 0.11	H_2O	iaus336,a
丁 ()	R Cnc	Mira	$3.84{\pm}0.29$	$4.43 {\pm} 0.55$	357	2.553	-0.97	-8.05 ± 0.16	H_2O	iaus336,a
	R UMa	Mira	$1.97 {\pm} 0.05$	The russInGaia P Log P m_K [mag]aas][mas][day][mag] ± 0.03 0.68 ± 0.23 411 2.614 2.55 3^b 660 2.820 2.22 ± 0.017 0.22 ± 0.12 822 2.915 1.33 ± 0.09 1410 3.149 8.548 ± 0.04 2.96 ± 0.19 368 2.566 0.12 ± 0.16 2.35 ± 0.13 150 2.176 0.639 ± 0.06 0.58 ± 0.22 434 2.637 1.533 ± 0.08 -5.92 ± 0.83 956 2.980 -0.72 ± 0.18 -0.96 ± 0.46 598 2.777 3.00 ± 0.05 0.10 ± 0.18 548 2.739 6.546 ± 0.29 4.43 ± 0.55 357 2.553 -0.97 ± 0.05 2.04 ± 0.20 302 2.480 1.19 ± 0.13 2.65 ± 0.15 155 2.190 0.786 ± 0.13 2.65 ± 0.15 155 2.190 -0.97 ± 0.50 7.83 ± 0.30 162 2.210 -1.96 ± 0.50 7.83 ± 0.30 162 2.210 -1.96 ± 0.50 7.83 ± 0.30 162 2.511 3.16 ± 0.50 7.83 ± 0.23 732 2.865 -0.17 ± 0.60 0.57 ± 0.15 406 2.609 -0.27 ± 0.40 3.15 ± 0.30 396 2.598 0.46 ± 0.07 <t< td=""><td>-7.34 ± 0.06</td><td>H_2O</td><td>nak16,d</td></t<>	-7.34 ± 0.06	H_2O	nak16,d			
	S Crt	SRb	2.33 ± 0.13	$2.65 {\pm} 0.15$	aia P Log P m_K is] [day] [mag] :0.23 411 2.614 2.55 . 660 2.820 2.22 :0.12 822 2.915 1.33 $-$. 1410 3.149 8.548 $-$:0.19 368 2.566 0.12 $-$:0.13 150 2.176 0.639 $-$:0.22 434 2.637 1.533 $-$:0.22 434 2.637 1.533 $-$:0.22 434 2.637 1.533 $-$:0.22 434 2.637 1.533 $-$:0.13 150 2.176 0.639 $-$:0.23 357 2.553 -0.72 $-$:0.15 155 2.190 0.786 $-$:0.20 302 2.480 1.19 $-$:0.15 155 2.190 -0.97 $-$:0.20 361 2.558 -3.16	-7.38 ± 0.12	H_2O	nak08,a		
	T UMa	Mira	$0.96 {\pm} 0.15$	$0.75 {\pm} 0.10$	257	2.410	2.60	-7.49 ± 0.44	H_2O	iaus336,a
	RT Vir	SRb	4.417 ± 0.134	$2.05 {\pm} 0.29$	IngalaIEdgp[mas][day] 68 ± 0.23 4112.6146602.820 22 ± 0.12 822 2.91514103.149 96 ± 0.19 3682.566 35 ± 0.13 1502.176 58 ± 0.22 4342.637 5.92 ± 0.83 9562.980 0.96 ± 0.46 5982.777 10 ± 0.18 5482.739 43 ± 0.55 3572.553 04 ± 0.20 3022.480 65 ± 0.15 1552.190 75 ± 0.10 2572.410 05 ± 0.29 1582.199 47 ± 0.89 3802.580 09 ± 0.82 3612.558 83 ± 0.30 1622.210 57 ± 0.18 3402.5312762.441 32 ± 0.29 3602.556 75 ± 0.15 4062.609 79 ± 0.23 7322.865 15 ± 0.30 3962.598 43 ± 0.21 3562.551 53 ± 0.57 12803.107 18 ± 0.17 5652.752 12 ± 0.28 1452.16117483.243 48 ± 0.08 83 ± 0.25 3782.577 12 ± 0.28 3902.591 42 ± 0.08 9252.966 34 ± 0.24 4302.633	-0.97	-7.76 ± 0.07	H_2O	zha17,a	
	R Hya	Mira	$8.96 {\pm} 0.51$	$4.47 {\pm} 0.89$	380	2.580	-2.51	-7.75 ± 0.12	H_2O	iaus336,a
	W Hya	SRa	10.18 ± 2.36	$6.09 {\pm} 0.82$	361	2.558	-3.16	-8.12 ± 0.51	OH	vle03,c
則	RX Boo	SRb	7.31 ± 0.50	$7.83 {\pm} 0.30$	162	2.210	-1.96	-7.64 ± 0.15	H_2O	kam12,b
)	VF Boo	Mira	$0.97 {\pm} 0.06$	$0.57 {\pm} 0.18$	340	2.531	3.84	-6.23 ± 0.13	H_2O	kam16b,a
()	Y Lib	Mira	1.24 ± 0.13		276	2.441	3.16	-6.37 ± 0.23	H_2O	iaus336,a
	S CrB	Mira	$2.39 {\pm} 0.17$	2.32 ± 0.29	360	2.556	0.21	-7.90 ± 0.15	OH	vle07,c
	U Her	Mira	$3.76 {\pm} 0.27$	1.75 ± 0.15	406	2.609	-0.27	-7.39 ± 0.16	OH	vle07,c
	VX Sgr	SRc	$0.64 {\pm} 0.04$	$0.79 {\pm} 0.23$	732	2.865	-0.17	-11.14 ± 0.14	H_2O	xu18,a
	RR Aql	Mira	$1.58 {\pm} 0.40$	3.15 ± 0.30	396	2.598	0.46	-8.55 ± 0.56	OH	vle07,c
	SY Aql	Mira	$1.10 {\pm} 0.07$	$3.43 {\pm} 0.21$	356	2.551	2.36	-7.43 ± 0.14	H_2O	iaus336,a
	NML Cyg	SRc	$0.62 {\pm} 0.047$	$1.53 {\pm} 0.57$	1280	3.107	0.791	-10.25 ± 0.16	H_2O	zha12,a
	UX Cyg	Mira	$0.54 {\pm} 0.06$	$0.18 {\pm} 0.17$	565	2.752	1.40	-9.94 ± 0.24	H_2O	kur05,a
	SV Peg	SRb	$3.00 {\pm} 0.06$	1.12 ± 0.28	145	2.161	-0.55	-8.16 ± 0.04	H_2O	sud18,a
	NSV25875	OH/IR	$0.38 {\pm} 0.13$		1748	3.243	6.857	-5.24 ± 0.77	SiO	···,a
	IRAS22480+6002	SRc	$0.400 {\pm} 0.025$	$0.48 {\pm} 0.08$			2.78	-9.21 ± 0.14	H_2O	ima12,a
	R Peg	Mira	$3.98 {\pm} 0.21$	$2.83 {\pm} 0.25$	378	2.577	0.45	-6.55 ± 0.11	H_2O	iasu336,a
	R Aqr	Mira	4.7 ± 0.8	3.12 ± 0.28	390	2.591	-1.01	-7.65 ± 0.37	SiO	kam10,c
	R Aqr	Mira	$4.59 {\pm} 0.24$	3.12 ± 0.28	390	2.591	-1.01	-7.70 ± 0.11	SiO	min14,c
р.	PZ Cas	SRc	$0.356 {\pm} 0.026$	$0.42 {\pm} 0.08$	925	2.966	1.00	-11.24 ± 0.16	H_2O	kus13,b
	R Cas	Mira	5.67 ± 1.95	$5.34 {\pm} 0.24$	430	2.633	-1.80	-8.03 ± 0.78	OH	vle03,c

天の川銀河 AGB星の Parallax (34天体)

VLBIによる計測 (VERA + VLBA)

VERAによる計測

Nakagawa et al. in prep

天の川銀河Mira型変光星 Mĸ-logP

Period vs Mk of Galactic LPVs

天の川銀河Mira型変光星 Mĸ - logP

Period vs Mk of Galactic LPVs

Nakagawa et al. IAUS343 Proceeding

Gaia DR2

- 2018年4月25日 リリース
- 活用データ期間 2014 Aug 22 ~ 2016 May 23 (640d = 1.75yr)
- 13億天体の位置・固有運動・Parallaxなど5パラメーター ほか
- Single starとして扱い、全天体の5パラメーターを同時に解く
- 3 mag < G < 21 mag
- Parallax 精度

$\mathbf{O}\pi$ (Parallax error)	G magnitude
~0.04 mas	G < 14 mag
~ 0.1 mas	G ~ 17 mag
~ 0.7 mas	G ~ 20 mag
Luri et al. 2018	

Summary of the contents and survey properties Gaia Collaboration 2018

とくにAGB星について見ると...

- DR1では皆無だったが...
- DR2では多くのAGB星の結果が公開(前出リスト 30/34 → 88%)
- DR3はバイナリーも考慮

Parallax ; VLBI vs Gaia

(34天体)

VLBIによる計測 (VERA + VLBA)

Source	Туре	$\Pi_{\rm VLBI}$	Π_{Gaia}	P	$\mathrm{Log}P$	m_K	M_K	Maser	Ref. [†]
		[mas]	[mas]	[day]		[mag]	[mag]		(Π_{VLBI}, m_K)
SY Scl	Mira	0.75 ± 0.03	0.68±0.23	411	2.614	2.55	-8.07 ± 0.09	H_2O	nyu11,b
WX Psc	OH/IR	5.3 ^{<i>b</i>}		660	2.820	2.22	-4.16	OH	oro17,a
S Per	SRc	$0.413 {\pm} 0.017$	0.22 ± 0.12	822	2.915	1.33	-10.59 ± 0.09	H_2O	asa10,b
OH138.0+7.2	OH/IR	$0.52{\pm}0.09$		1410	3.149	8.548	-2.87 ± 0.38	OH	oro17,a
T Lep	Mira	3.06 ± 0.04	2.96 ± 0.19	368	2.566	0.12	-7.45 ± 0.03	H_2O	nak14,c
RW Lep	SRa	1.62 ± 0.16	2.35 ± 0.13	150	2.176	0.639	-8.31 ± 0.22	H_2O	kam14,a
U Lyn	Mira	1.27 ± 0.06	$0.58 {\pm} 0.22$	434	2.637	1.533	-7.95 ± 0.10	H_2O	kam16a,a
VY CMa	SRc	$0.88 {\pm} 0.08$	$-5.92{\pm}0.83$	956	2.980	-0.72	-11.00 ± 0.20	H_2O	cho08,b
OZ Gem	Mira	$1.00{\pm}0.18$	-0.96 ± 0.46	598	2.777	3.00	-7.00 ± 0.40	H_2O	iaus336,a
OH231.8+4.2	OH/IR	$0.55 {\pm} 0.05$	$0.10 {\pm} 0.18$	548	2.739	6.546	-4.53 ± 0.11	H_2O	iaus336,a
R Cnc	Mira	$3.84{\pm}0.29$	4.43 ± 0.55	357	2.553	-0.97	-8.05 ± 0.16	H_2O	iaus336,a
R UMa	Mira	$1.97 {\pm} 0.05$	2.04 ± 0.20	302	2.480	1.19	-7.34 ± 0.06	H_2O	nak16,d
S Crt	SRb	2.33 ± 0.13	2.65 ± 0.15	155	2.190	0.786	-7.38 ± 0.12	H_2O	nak08,a
T UMa	Mira	$0.96 {\pm} 0.15$	0.75 ± 0.10	257	2.410	2.60	-7.49 ± 0.44	H_2O	iaus336,a
RT Vir	SRb	4.417 ± 0.134	2.05 ± 0.29	158	2.199	-0.97	-7.76 ± 0.07	H_2O	zha17,a
R Hya	Mira	$8.96 {\pm} 0.51$	4.47 ± 0.89	380	2.580	-2.51	-7.75 ± 0.12	H_2O	iaus336,a
W Hya	SRa	10.18 ± 2.36	6.09 ± 0.82	361	2.558	-3.16	-8.12 ± 0.51	OH	vle03,c
RX Boo	SRb	7.31 ± 0.50	7.83 ± 0.30	162	2.210	-1.96	-7.64 ± 0.15	H_2O	kam12,b
VF Boo	Mira	$0.97 {\pm} 0.06$	$0.57 {\pm} 0.18$	340	2.531	3.84	-6.23 ± 0.13	H_2O	kam16b,a
Y Lib	Mira	1.24 ± 0.13		276	2.441	3.16	-6.37 ± 0.23	H_2O	iaus336,a
S CrB	Mira	2.39 ± 0.17	2.32 ± 0.29	360	2.556	0.21	-7.90 ± 0.15	OH	vle07,c
U Her	Mira	3.76 ± 0.27	1.75 ± 0.15	406	2.609	-0.27	-7.39 ± 0.16	OH	vle07,c
VX Sgr	SRc	$0.64{\pm}0.04$	0.79 ± 0.23	732	2.865	-0.17	-11.14 ± 0.14	H_2O	xu18,a
RR Aql	Mira	1.58 ± 0.40	3.15 ± 0.30	396	2.598	0.46	-8.55 ± 0.56	OH	vle07,c
SY Aql	Mira	$1.10{\pm}0.07$	3.43 ± 0.21	356	2.551	2.36	-7.43 ± 0.14	H_2O	iaus336,a
NML Cyg	SRc	0.62 ± 0.047	1.53 ± 0.57	1280	3.107	0.791	-10.25 ± 0.16	H_2O	zha12,a
UX Cyg	Mira	$0.54{\pm}0.06$	0.18 ± 0.17	565	2.752	1.40	-9.94 ± 0.24	H_2O	kur05,a
SV Peg	SRb	$3.00{\pm}0.06$	1.12 ± 0.28	145	2.161	-0.55	-8.16 ± 0.04	H_2O	sud18,a
NSV25875	OH/IR	$0.38 {\pm} 0.13$		1748	3.243	6.857	-5.24 ± 0.77	SiO	···,a
IRAS22480+6002	SRc	0.400 ± 0.025	$0.48 {\pm} 0.08$			2.78	-9.21 ± 0.14	H_2O	ima12,a
R Peg	Mira	$3.98 {\pm} 0.21$	2.83 ± 0.25	378	2.577	0.45	-6.55 ± 0.11	H_2O	iasu336,a
R Aqr	Mira	4.7 ± 0.8	3.12 ± 0.28	390	2.591	-1.01	-7.65 ± 0.37	SiO	kam10,c
R Aqr	Mira	4.59 ± 0.24	3.12 ± 0.28	390	2.591	-1.01	-7.70 ± 0.11	SiO	min14,c
PZ Cas	SRc	$0.356 {\pm} 0.026$	0.42 ± 0.08	925	2.966	1.00	-11.24 ± 0.16	H_2O	kus13,b
R Cas	Mira	5.67±1.95	5.34±0.24	430	2.633	-1.80	-8.03 ± 0.78	OH	vle03,c

Nakagawa et al. in prep.

Parallax ; VLBI vs Gaia

(34天体)

VLBIによる計測 (VERA + VLBA)

精度 10%より良い

DR2 データなし

負のParallax

	Source	Туре	$\Pi_{\rm VLBI}$	Π_{Gaia}	P	$\mathrm{Log}P$	m_K	M_K	Maser	Ref. [†]
			[mas]	[mas]	[day]		[mag]	[mag]		(Π_{VLBI}, m_K)
	SY Scl	Mira	0.75 ± 0.03	0.68±0.23	411	2.614	2.55	-8.07 ± 0.09	H_2O	nyu11,b
	WX Psc	OH/IR	5.3 ^b		660	2.820	2.22	-4.16	OH	oro17,a
}	S Per	SRc	$0.413 {\pm} 0.017$	0.22 ± 0.12	822	2.915	1.33	-10.59 ± 0.09	H_2O	asa10,b
	OH138.0+7.2	OH/IR	$0.52{\pm}0.09$		1410	3.149	8.548	-2.87 ± 0.38	OH	oro17,a
	T Lep	Mira	3.06 ± 0.04	2.96 ± 0.19	368	2.566	0.12	-7.45 ± 0.03	H_2O	nak14,c
	RW Lep	SRa	1.62 ± 0.16	2.35 ± 0.13	150	2.176	0.639	-8.31 ± 0.22	H_2O	kam14,a
	U Lyn	Mira	1.27 ± 0.06	$0.58 {\pm} 0.22$	434	2.637	1.533	-7.95 ± 0.10	H_2O	kam16a,a
	VY CMa	SRc	$0.88 {\pm} 0.08$	$-5.92{\pm}0.83$	956	2.980	-0.72	-11.00 ± 0.20	H_2O	cho08,b
	OZ Gem	Mira	$1.00{\pm}0.18$	-0.96 ± 0.46	598	2.777	3.00	-7.00 ± 0.40	H_2O	iaus336,a
	OH231.8+4.2	OH/IR	$0.55 {\pm} 0.05$	$0.10{\pm}0.18$	548	2.739	6.546	-4.53 ± 0.11	H_2O	iaus336,a
	R Cnc	Mira	$3.84{\pm}0.29$	4.43 ± 0.55	357	2.553	-0.97	-8.05 ± 0.16	H_2O	iaus336,a
	R UMa	Mira	$1.97{\pm}0.05$	$2.04{\pm}0.20$	302	2.480	1.19	-7.34 ± 0.06	H_2O	nak16,d
	S Crt	SRb	2.33±0.13	2.65 ± 0.15	155	2.190	0.786	-7.38 ± 0.12	H_2O	nak08,a
	T UMa	Mira	$0.96 {\pm} 0.15$	0.75 ± 0.10	257	2.410	2.60	-7.49 ± 0.44	H_2O	iaus336,a
	RT Vir	SRb	4.417 ± 0.134	2.05 ± 0.29	158	2.199	-0.97	-7.76 ± 0.07	H_2O	zha17,a
	R Hya	Mira	$8.96 {\pm} 0.51$	4.47 ± 0.89	380	2.580	-2.51	-7.75 ± 0.12	H_2O	iaus336,a
	W Hya	SRa	10.18 ± 2.36	6.09 ± 0.82	361	2.558	-3.16	-8.12 ± 0.51	OH	vle03,c
	RX Boo	SRb	7.31 ± 0.50	7.83 ± 0.30	162	2.210	-1.96	-7.64 ± 0.15	H_2O	kam12,b
	VF Boo	Mira	$0.97 {\pm} 0.06$	$0.57 {\pm} 0.18$	340	2.531	3.84	-6.23 ± 0.13	H_2O	kam16b,a
	Y Lib	Mira	$1.24{\pm}0.13$		276	2.441	3.16	-6.37 ± 0.23	H_2O	iaus336,a
	S CrB	Mira	2.39 ± 0.17	2.32 ± 0.29	360	2.556	0.21	-7.90 ± 0.15	OH	vle07,c
	U Her	Mira	3.76 ± 0.27	1.75 ± 0.15	406	2.609	-0.27	-7.39 ± 0.16	OH	vle07,c
	VX Sgr	SRc	$0.64{\pm}0.04$	0.79 ± 0.23	732	2.865	-0.17	-11.14 ± 0.14	H_2O	xu18,a
	RR Aql	Mira	1.58 ± 0.40	3.15 ± 0.30	396	2.598	0.46	-8.55 ± 0.56	OH	vle07,c
	SY Aql	Mira	1.10 ± 0.07	3.43±0.21	356	2.551	2.36	-7.43 ± 0.14	H_2O	iaus336,a
	NML Cyg	SRc	0.62 ± 0.047	1.53 ± 0.57	1280	3.107	0.791	-10.25 ± 0.16	H_2O	zha12,a
	UX Cyg	Mira	$0.54{\pm}0.06$	0.18 ± 0.17	565	2.752	1.40	-9.94 ± 0.24	H_2O	kur05,a
	SV Peg	SRb	3.00 ± 0.06	1.12 ± 0.28	145	2.161	-0.55	-8.16 ± 0.04	H_2O	sud18,a
	NSV25875	OH/IR	0.38 ± 0.13		1748	3.243	6.857	-5.24 ± 0.77	SiO	···,a
	IRAS22480+6002	SRc	0.400 ± 0.025	0.48 ± 0.08			2.78	-9.21 ± 0.14	H_2O	ima12,a
	R Peg	Mira	3.98±0.21	2.83 ± 0.25	378	2.577	0.45	-6.55 ± 0.11	H_2O	iasu336,a
	R Aqr	Mira	4.7 ± 0.8	3.12 ± 0.28	390	2.591	-1.01	-7.65 ± 0.37	SiO	kam10,c
	R Aqr	Mira	4.59 ± 0.24	3.12 ± 0.28	390	2.591	-1.01	-7.70 ± 0.11	SiO	min14,c
	PZ Cas	SRc	0.356 ± 0.026	0.42 ± 0.08	925	2.966	1.00	-11.24 ± 0.16	H_2O	kus13,b
	R Cas	Mira	5.67±1.95	5.34±0.24	430	2.633	-1.80	-8.03 ± 0.78	OH	vle03,c

Nakagawa et al. in prep.

変光周期と Parallax差の関係

• 変光周期とResidual

Period vs Residual

$$\frac{\Pi_{\rm VLBI} - \Pi_{\rm Gaia}}{\left/ \sigma_{\Pi_{\rm VLBI}}^2 + \sigma_{\Pi_{\rm Gaia}}^2 \right.}$$

→ 正の相関あり?

- 変光周期と相関しそうなパラメーター
 - 光球サイズ
 - 光度
 - 質量

(1) VLBI parallax > Gaia parallax の傾向
(2) Residual が周期に依存

Pulsation period [day]

考察1: Lutz and Kelker bias (Lutz and Kelker 1973)

Probability density function (PDF) of ρ

$$p(\rho \mid \varpi_{\text{True}}) = p(\varpi = 1/\rho \mid \varpi_{\text{True}}) \cdot \left| \frac{d\varpi}{d\rho} \right|$$
$$= \frac{1}{\rho^2 \sigma_{\varpi} \sqrt{2\pi}} \exp\left(-\frac{(1/\rho - \varpi_{\text{True}})^2}{2\sigma_{\varpi}^2}\right)$$
$$\rho:\text{distance}$$

- もし Lutz and Kelker bias だとすると…
 → Parallax を大きく見積もりがち
- VLBI parallax > Gaia parallax
 の傾向とは逆のセンス

Parallax measurement uncertainty σ_{π} Parallax π

考察2: Gaia DR2 に見られる Parallax zero point のオフセット

Fig. 7. Parallaxes for the full quasar sample plotted against magnitude (left), colour (middle), and ecliptic latitude (right). Because of the chosen scale, only about one-third of the data points are shown as yellow dots; the blue curves are the running medians.

- ・QSOを用いた内部検証
- Global zero point of the parallax
 - \rightarrow -0.029mas
- Zero point offset に準周期的パターン
- ・"-0.029 mas" はVLBI-Gaiaの差より十分小さい

Fig. 13. Map of the median parallaxes for a sample of sources in the LMC area, showing small-scale variations of the parallax zero point. Median values are calculated in cells of about $0.057 \times 0.057 \text{ deg}^2$.

考察3:表面輝度構造変化の影響

Chiavassa et al. 2018 (arXiv:1808.02548v1) 3D radiative-hydrodynamics simulations of convection

・シミュレーションからの見解

- ・1年より短い時間で表面輝度構造が変化
- ・数auの光球がその数十%のスケールで構造変化
- ・重心の移動 0.077 to 0.198 AU (~5 to ~11% of R*)
- ・σπの周期(P)依存も見えている

・影響は大きいが VLBI parallax > Gaia parallax を説明しない

Gaiaの年周視差に基づくP-Mk分布

Ita et al. 2011

LMC のMira型星のP-Mk分布

・LMCのO-rich Mira(●)では暗い側 への広がりは見られない

O-rich Mira(●)の暗い側への
 広がりは我々の銀河に特有か

・天の川銀河Miraはダストによる
 星周減光が顕著?

VLBI 位置 天文は Gaia と 相補的

- Gaiaで答えが出ない星もある
- ・OH/IR星の位置天文観測
- Extreme-OH/IR星 NSV25875

Method

VERA parallax

- Parallax = 0.38 ± 0.13 mas -> D = 2.60 ± 0.85 kpc
- ・Qバンド広帯域(4Gbps)システムの活用

Phase-lag method

Kinematic distance

Distance [kpc]

 2.60 ± 0.85

 2.1 ± 0.42

Fig: (上)43GHz SiO v=2 maser spot of an OH/IR star NSV25875 on 1 Nov 2017. (左)Sky plane motion of the maser spot from 1 Nov., 2017 to 4 May, 2108. (中)RA motion of the spot. Horizontal axis is days from 1 Jan., 2017. (右)DEC motion.