

Two Distinct Ancient Populations in the Sculpter Dwarf Spheroidal Galaxy

Tolstoy et al. (2004) ApJL 617, 119

• The First Result from DART (Dwarf Abundances and Radial velocity Team)

E.Tolstoy, M.J.Irwin, A.Helmi, G.Battaglia, P.Jablonka, V.Hill, K.A.Venn, M.D.Shetrone, B.Letarte, A.A.Cole, F.Primas, P.Francois, N.Arimoto, K.Sadakane, A.Kaufer, T.Szeifert, T.Abel

Two Distinct Ancient Populations in the Sculptor Dwarf Spheroidal Galaxy

- The Sculptor dSph contains two distinct stellar components, one metal-rich, -0.9 > [Fe/H] > -1.7, and one metal-poor, -1.7 > [Fe/H] > -2.8.
- The metal-rich population is more centrally concentrated than the metal-poor one, and on average appears to have a lower velocity dispersion = 7 ± 1 km/s, whereas metal-poor stars have = 11 ± 1 km/s.

Strong Radial Metallicity Gradient -0.5 --1.5 [Fe/H] <u>د</u> -2.5 η <mark>Ε</mark> 1_{0.1} 0.2 0.5 0.2 0.5 2 R (kpc) t_{form} (Gyr) 0.5 0 1.5 2.5 2 The MDF for the inner (outer) regi ([Fe/H] \sim -1.9). We find this is just a peak at [Fe/H] ~ - 1.4 t due to the metallicity gradient in the simulated system.

Caveats

Our simulation demonstrates that a system formed at a high redshift can reproduce the two stellar populations whose chemical and dynamical properties are distinctive.

However,

- In the observational data, there are no stars at [Fe/H]<-2.8, while the simulated galaxy has a significant fraction of stars with such low metallicity (G-dwarf problem).
- The velocity dispersion of our simulated galaxy is too small compared with the observed values.
- The V-band magnitude of the simulated galaxy (Mv=-7.23) is also small compared with the Sculptor dSph (Mv=-10.7).

Sculpter dSph Simulation

In the simulation dwarf spheroidals formed via hierarchical clustering, but stars formed from cold gas and stars at the galaxy center tend to form from metal-enriched infall gas, which builds up the metallicity gradient.

Infalling gas has larger rotational velocity and small velocity dispersion.