

長谷川 隆 県立ぐんま天文台

前口上

- そもそもは....
 - >「観測研究講座(2000年度)」の題材
 - ぐんま天文台普及事業の一つ
 - 65cm望遠鏡 & CCDカメラ測光観測
 - 研究(答えがないテーマ)であること とりあえず、散開星団の測光

観測

- 〈わし〈は.....
 - > 天文月報2005年9月号参照
- ちなみに.....H18の天文学校では
 - > ヒヤデス星団の固有運動の測定

目的

- 1. 球状星団と散開星団の中間の性質の星団はどのくらいあるか
- 2. 銀河円盤の金属量勾配
- 3. 降着起源の星団の探査

中間の性質の星団

• 銀河系の散開星団と球状星団の性質(教科書)

	散開星団	球状星世
年齡	0.01 ~ 0.1 Gyr	~ 13 Gyr
メンバー星数	100~1000	$10^4 \sim 10^6$
分布	銀河円盤上	ハロー
金属量[Fe/H]	-1.0 ~ 0.2	$-2.3 \sim +0.2$

- 性質は対照的だが、中間の性質の星団も確かにある
 - > 非常に古い散開星団 (8~10 Gyr)
 - NGC6791, Lynga 7, Collinder 261, Berkeley 17, NGC 188
 - > Cyg OB2 10⁴M
 - > Populous cluster (Magellanic clouds)

古い散開星団 (1)

- Friel の先駆的な論文 (1995)
 - > 0.6 Gyrより古い星団 73星団
 - Hyades星団 ~ 0.6 Gyr
 - GMCにより散逸される時定数 ~ 0.2 Gyr (Spitzer 1958)
 - Out of 500
 - > 1 Gyrより古い星団

40星団

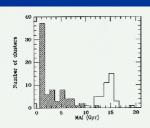
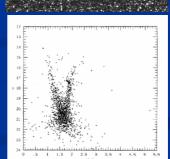



Figure 5 Histogram of number of clusters as a function of morphological age index MAI, after Janes & Phelps (1994), but with the additional data of Table 1. Open clusters are shown by the cross-hatched regions. Globular clusters are shown by the unfilled histogram.

Lynga 7 Fig. 5. Deep V vs. (V-I) CMD of central extraction in Lynga 7. Some bright stars are missing relative to Fig. 2a because of saturation effects and extraction differences

古い散開星団(2)

- 動系分布
 - > r_{GC} 7.5 kpc には古い星団がない
 - > 最遠はr_{GC} ~19 kpc (Berkeley 29)
- scale height
 - > 若い星団 ~ 50 pc
 - > 古い星団 ~350 pc cf. thin disk 300 pc
- 金属量勾配
 - > smooth gradient -0.07 dex kpc⁻¹ (Friel 1995)
 - > 10 kpc break (Twarog, 1997)
 - B型星、PN、HII領域などでも両方の 解釈が可能か
- 年齢金属量関係 なし

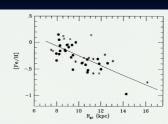


Figure 7 Radial abundance gradient for the old open clusters, with metallicities from Table 1. Filled circles are points from Friel & Jaces (1993) or Theogenen et al (1994). Starred symbols are preliminary metallicities from Friel et al (1995). Crosses are data taken from Lyaga (1987). The solid line is a least-squares fit to the data that yields an abundance gradient of Δ [Fe/H]/ $R_{gc} = -0.091 \pm 0.01$

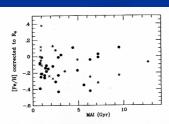


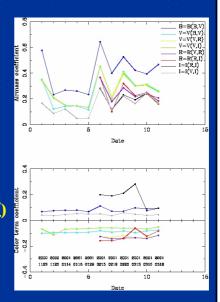
Figure 8 Relationship of metallicity [Fe/H] as a function of age, as measured by the morphological age indicator MAI for clusters with metallicities in Table 1. The [Fe/H] values have been corrected for the radial abundance gradient and pormalized to the abundance they would have if located at the solar Galactice entrie distance of § 5.5 kpc. Symbols as in Figure 7.

観測対象の選択基準

- Lynga(1987)のカタログから対象を選択
- Trumpler's morphological parameterを利用
 - > Frielのサンプルの分布を見てみると
 - detachment 集中度が高い
 - richness メンバー数が多い
 - contrast 明るさのコントラストが低い

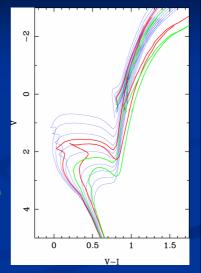
古い星団の(~生き残りやすい)特徴

Table 2. The distribution of non-phological parameter of F95 sample given in COCD.

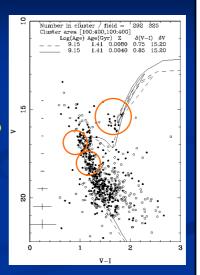

Detachment	1		11			1111		[V-				
Contrast	1	. 2	3	1	2	3	1	2	3	1	2	3
								_				
Rächmess p	1	1	0	ı.	1	0	0	0	0	2	0	0
,1	5	-6	Í	2	7	1	0	Ð,	0	0	0	0
Di	4	7	1	4	10	1	3	2	0.	0	2	0

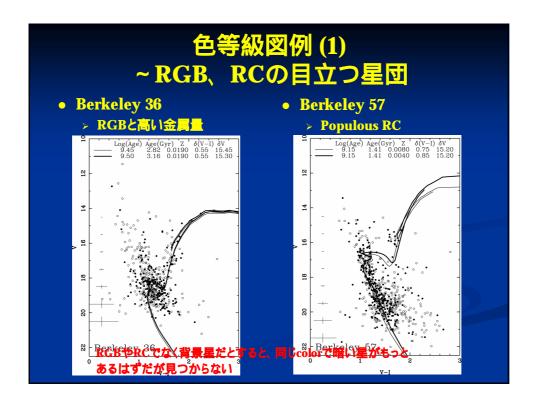
観測対象

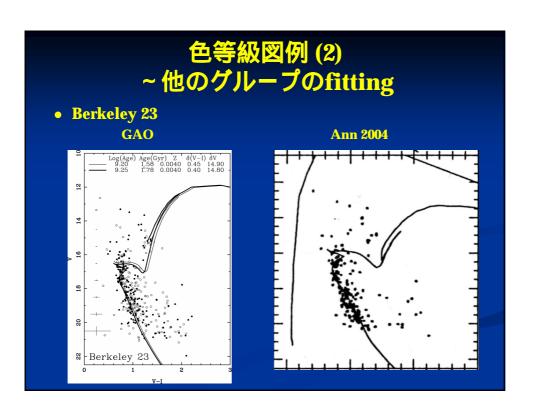
- 形態パラメーターで選んだ星団の他に、Collinder 261など 重要な星団が含まれるカタログはDSS上でチェックして追加
- 総計 約100個 (b > -20°に限定すると70個)
- 現在 33個 (約半数) + 17個 (2005-06 season)
 - > 傾向は見えてもまだ完全サンブルではない
 - そもそも Lynga / WEBDA も不完全だが
 - > まだまだ太陽近傍でしかない
 - > 重要な天体や、形成過程などのヒントを指摘する段階
 - 距離
 - 金属量
 - _ infall

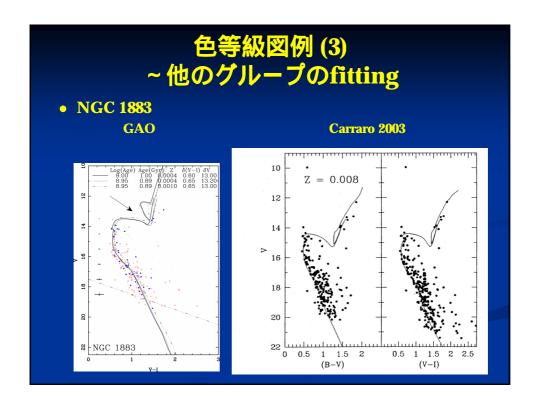

観測

- 望遠鏡 ぐんま天文台65cm
- カメラ AP7(空冷) / AP8(水冷)
 - > 512²(AP7), 1024²(AP8)
 - > SITe: 24 micron
 - > Pix scale: 0".63
 - > FOV: 5.1'(AP7), 10.3'(AP8)
 - > Typical seeing: 1.5" ~ 2" (I-band)
 - > blue sensitized
 - > UV enhanced coating (AP7)
- 温度 -60 (冬) ~ -40 (夏)
- フィルター B、V、I(Bessel)
- 限界等級 B20.5 V20.0 I19.5 (Exp. 1時間、SN~10)
- 測光係数 2000/04/05シーズン
- 途中から2MASSも利用


色等級図(等時曲線)のふるまい


- MS (中心 H 燃焼段階)
 - > TOに年齢依存性
 - > 曲率に金属量依存性
- RGB (殼 H 燃焼段階)
 - > 曲率に金属量依存性
- RC: 明るさがほぼ一定
 - > 中心 He 燃焼段階、第二の安定期
 - > 等級、色が年齢、金属量によらない
 - RCが多い星団は20~30億年
 - 本当に古い星団はむしろRCはみえない
 - Subgiantが見えたら 4 Gyr
 - > Mass-loss deconcentration
- 概算
 - \rightarrow 年齡 $V = (V_{RC} V_{MSTO})$
 - > 金属量 (V-I) RC/MSTON MS/RGB 曲率




年齢、金属量、距離推定の方法

- Isochrone fitting
 - > Padova group
 - Bertelli 1994; Giraldi 2000
 - RC / AGB phase が利用可能
 - > 概算を確認、定量的に精密な推定へ
- 年齢の精度 = ~ 0.1
 - > Equivalent Evolutionary Pointあてはめ
 - > convective overshootingの影響を 入れないと年齢を underestimate
- 金属量の精度 = ~0.3 dex
 - > Padova metallicity grid 1 step
 - > 分光金属量と30% Gratton (2000)
- 距離精度
 - > カラー 吸収量 $A_V = 4.3 E(V-I)$
 - > 典型的に15%、まれに30%

結果(1) ~ 年齡分布

- 球状星団相当の年齢の星団なし
 - > Friel の結果は convective overshootを考慮しない Vで 年齢を求めており、20~40億年の 星団で古〈評価される
- 32/33 はヒヤデスかそれより 古い
- 1~4 Gyr の星団数は倍増
- 星団形成が有意に卓越した 時期は?

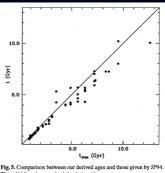
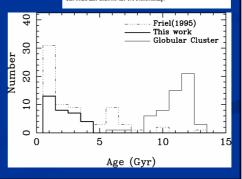
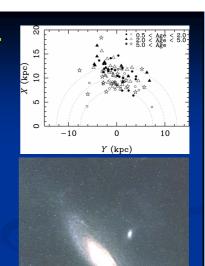
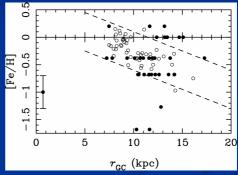




Fig. 5. Comparison between our derived ages and those given by JP94. The solid line denotes the 1:1 relationship.


結果(2) ~ Disk上の分布

- 最遠の星団 ~ 18 kpc (Biurakan 7?)
 - > それでも Friel (1995) に比べ 遠い星団が多い
 - > それでも M 31 に投影すると 極近傍といえる
- Lynga カタログの星団は r_{cc} ~ 15 kpc が限界か
 - > 限界等級 V20
- 銀河円盤外縁の研究には SDSSクラスのサーベイが 必要、EISクラスが望ましい

結果(3) ~ 金属量勾配

- ばらつきが非常に大きい
 - ▶ 測光による金属量精度以上 (と思っている)
- 超低金属量星团
 - > 主系列の曲がりから、金属量が 低いのは大間違いではない
 - HVCの降着にともなう星形成 の結果か
- 高金属量星団
 - > RGBの曲がりからかなり強く 言えるものもある
 - > 成因が説明しにくい

